On a variational formulation of problems in the classical continuum mechanics of solids

作者: V. Komkov

DOI: 10.1016/0020-7225(68)90008-6

关键词: Linear elasticityMathematicsContinuum mechanicsFormalism (philosophy of mathematics)Classical mechanicsElasticity (economics)

摘要: Abstract The basic equations of linear elasticity, mildly non-linear elasticity and plastic flow are reduced to a generalization Hamilton's canonical formalism. Complementary variational principles deduced. Numerical applications these demonstrated in some simple cases.

参考文章(10)
Einar Hille, Ralph S. Phillips, Functional Analysis And Semi-Groups ,(1948)
L.B Rall, On complementary variational principles Journal of Mathematical Analysis and Applications. ,vol. 14, pp. 174- 184 ,(1966) , 10.1016/0022-247X(66)90018-7
Tosio Kato, On some approximate methods concerning the operatorsT* T Mathematische Annalen. ,vol. 126, pp. 253- 262 ,(1953) , 10.1007/BF01343163
Vadim Komkov, Application of Rall's theorem to classical elastodynamics Journal of Mathematical Analysis and Applications. ,vol. 14, pp. 511- 521 ,(1966) , 10.1016/0022-247X(66)90011-4
Ivan Stephen Sokolnikoff, Mathematical theory of elasticity ,(1946)
K. Washizu, A Note on the Conditions of Compatibility Journal of Mathematics and Physics. ,vol. 36, pp. 306- 312 ,(1957) , 10.1002/SAPM1957361306
J. v. Neumann, Uber Adjungierte Funktionaloperatoren Annals of Mathematics. ,vol. 33, pp. 294- ,(1932) , 10.2307/1968331
K. O. Friedrichs, On the Boundary-Value Problems of the Theory of Elasticity and Korn's Inequality The Annals of Mathematics. ,vol. 48, pp. 441- ,(1947) , 10.2307/1969180
John Lighton Synge, Tensor calculus ,(1949)