作者: Rudi Malfliet
DOI: 10.1007/978-1-4684-5179-5_4
关键词: Classical fluids 、 Van der Waals equation 、 Equation of state 、 Lattice Boltzmann methods 、 van der Waals force 、 Boltzmann equation 、 Plasma modeling 、 Boltzmann relation 、 Physics 、 Mathematical physics
摘要: One of the very outstanding problems in study interacting many-particle systems is determination their bulk macroscopic properties and its verification with calculations based on microscopic interactions. For example, case classical fluids we know that equation state has a van der Waals form: $$(p + a{\rho ^2})(1 - b\rho ) = \rho kT$$ where p density, T temperature pressure. The constants b are principle determined by specifics liquid question. challenge now to obtain these through calculation starting from Lennard-Jones interaction between molecules. property equilibrium. There also non-equilibrium like ρ- T-dependence transports coefficients (shear viscosity, thermal conductivity diffusion). In order calculate one needs dynamical appropriate for processes. limit full equilibration this will tell us about equilibrium properties. A well known example such an Boltzmann equation, which however be modified correspond (in equilibrium) (we discuss point further on). any there whole framework available been studied many years past (see ref. 1).