A lower to middle Eocene astrochronology for the Mentelle Basin (Australia) and its implications for the geologic time scale.

作者: Maximilian Vahlenkamp , David De Vleeschouwer , Sietske J Batenburg , Kirsty M Edgar , Emma Hanson

DOI: 10.1016/J.EPSL.2019.115865

关键词: PaleontologyBiostratigraphyMagnetostratigraphyGeologic time scaleStratigraphyCenozoicGeologyAstrochronologySedimentary rockInternational Ocean Discovery Program

摘要: The geologic time scale for the Cenozoic Era has been notably improved over last decades by virtue of integrated stratigraphy, combining high-resolution astrochronologies, biostratigraphy and magnetostratigraphy with high-precision radioisotopic dates. However, middle Eocene remains a weak link. so-called “Eocene gap” reflects scarcity suitable study sections clear astronomically-forced variations in carbonate content, primarily because large parts oceans were starved during greenhouse. International Ocean Discovery Program (IODP) Expedition 369 cored carbonate-rich sedimentary sequence age Mentelle Basin (Site U1514, offshore southwest Australia). consists nannofossil chalk exhibits rhythmic clay content variability. Here, we show that IODP Site U1514 allows extraction an astronomical signal construction astrochronology, using 3-cm resolution X-Ray fluorescence (XRF) core scans. XRF-derived ratio between calcium iron (Ca/Fe) tracks lithologic variability serves as basis our astrochronology. We present 16 million-year-long (40-56 Ma) nearly continuous history sedimentation paced eccentricity obliquity. supplement XRF data low-resolution bulk carbon oxygen isotopes, recording long-term cooling trend from Paleocene-Eocene Thermal Maximum (PETM – ca. 56 into (ca. 40 Ma). Our early astrochronology corroborates existing chronologies based on deep-sea sites Italian land sections. For Eocene, sedimentological record at provides single-site geochemical backbone thus offers further step towards fully orbital resolution.

参考文章(57)
Felix M. Gradstein, James G. Ogg, Gabi M. Ogg, Mark D. Schmitz, The Geologic Time Scale 2012 Elsevier. ,(2012)
LA Hinnov, FJ Hilgen, FM Gradstein, JG Ogg, Cyclostratigraphy and Astrochronology The Geologic Time Scale 2012. pp. 63- 83 ,(2012) , 10.1016/B978-0-444-59425-9.00004-4
J. G. Ogg, A. G. Smith, A Geologic Time Scale 2004: The geomagnetic polarity time scale Cambridge University Press. pp. 63- 86 ,(2005) , 10.1017/CBO9780511536045.006
V. Lauretano, K. Littler, M. Polling, J. C. Zachos, L. J. Lourens, Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum Climate of The Past. ,vol. 11, pp. 1313- 1324 ,(2015) , 10.5194/CP-11-1313-2015
T. Westerhold, U. Röhl, T. Frederichs, S. M. Bohaty, J. C. Zachos, Astronomical calibration of the geological timescale: closing the middle Eocene gap Climate of The Past. ,vol. 11, pp. 1181- 1195 ,(2015) , 10.5194/CP-11-1181-2015
Philip F. Sexton, Richard D. Norris, Paul A. Wilson, Heiko Pälike, Thomas Westerhold, Ursula Röhl, Clara T. Bolton, Samantha Gibbs, Eocene global warming events driven by ventilation of oceanic dissolved organic carbon Nature. ,vol. 471, pp. 349- 352 ,(2011) , 10.1038/NATURE09826
Brian McGowran, Qianyu Li, John Cann, Dianne Padley, David M. McKirdy, Samir Shafik, Biogeographic impact of the Leeuwin Current in southern Australia since the late middle Eocene Palaeogeography, Palaeoclimatology, Palaeoecology. ,vol. 136, pp. 19- 40 ,(1997) , 10.1016/S0031-0182(97)00073-4
Christopher J. Hollis, Kyle W.R. Taylor, Luke Handley, Richard D. Pancost, Matthew Huber, John B. Creech, Benjamin R. Hines, Erica M. Crouch, Hugh E.G. Morgans, James S. Crampton, Samantha Gibbs, Paul N. Pearson, James C. Zachos, Early Paleogene temperature history of the Southwest Pacific Ocean: Reconciling proxies and models Earth and Planetary Science Letters. ,vol. 349, pp. 53- 66 ,(2012) , 10.1016/J.EPSL.2012.06.024
A. Berger, M.F. Loutre, Insolation values for the climate of the last 10 million years Quaternary Science Reviews. ,vol. 10, pp. 297- 317 ,(1991) , 10.1016/0277-3791(91)90033-Q