A Framework for the Adaptive Finite Element Solution of Large-Scale Inverse Problems

作者: Wolfgang Bangerth

DOI: 10.1137/070690560

关键词: DiscretizationApplied mathematicsNumerical analysisLinear systemMathematicsNewton's method in optimizationPartial differential equationCalculusFinite element methodNonlinear systemNumerical linear algebra

摘要: Since problems involving the estimation of distributed coefficients in partial differential equations are numerically very challenging, efficient methods indispensable. In this paper, we will introduce a framework for solution such problems. This comprises use adaptive finite element schemes, solvers large linear systems arising from discretization, and to treat additional information form inequality constraints on parameter be recovered. The developed based an all-at-once approach, which inverse problem is solved through Lagrangian formulation. main feature paper continuous (function space) setting formulate algorithms, order allow discretizations that adaptively refined as nonlinear iterations proceed. entails steps description Newton step or line search first formulated functions only then evaluated discrete functions. On other hand, approach avoids dependence dimensional norms mesh size, making individual algorithm comparable even if they used differently meshes. Numerical examples demonstrate applicability efficiency method with several million unknowns more than 10,000 parameters.

参考文章(54)
K. Kunisch, W. B. Liu, N. Yan, A posteriori error estimators for a model parameter estimation problem Springer, Milano. pp. 723- 730 ,(2003) , 10.1007/978-88-470-2089-4_65
U.M. Ascher, E. Haber, A multigrid method for distributed parameter estimation problems. ETNA. Electronic Transactions on Numerical Analysis [electronic only]. ,vol. 15, pp. 1- 17 ,(2003)
Matthias Heinkenschloss, Bart van Bloemen Waanders, Omar Ghattas, Lorenz T. Biegler, Large-Scale PDE-Constrained Optimization ,(2003)
M. Guven, B. Yazici, X. Intes, B. Chance, An adaptive multigrid algorithm for region of interest diffuse optical tomography international conference on image processing. ,vol. 2, pp. 823- 826 ,(2003) , 10.1109/ICIP.2003.1246807
Martin Hanke, Heinz W. Engl, Andreas Neubauer, Regularization of Inverse Problems ,(1996)
Hend Ben Ameur, Guy Chavent, J$eacute$r$ocirc$me Jaffr$eacute$, Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities Inverse Problems. ,vol. 18, pp. 775- 794 ,(2002) , 10.1088/0266-5611/18/3/317
E Haber, U M Ascher, Preconditioned all-at-once methods for large, sparse parameter estimation problems Inverse Problems. ,vol. 17, pp. 1847- 1864 ,(2001) , 10.1088/0266-5611/17/6/319
Maïtine Bergounioux, Kazufumi Ito, Karl Kunisch, Primal-Dual Strategy for Constrained Optimal Control Problems Siam Journal on Control and Optimization. ,vol. 37, pp. 1176- 1194 ,(1999) , 10.1137/S0363012997328609
M.K. Sen, Akhil Datta-Gupta, P.L. Stoffa, L.W. Lake, G.A. Pope, Stochastic Reservoir Modeling Using Simulated Annealing and Genetic Algorithm Spe Formation Evaluation. ,vol. 10, pp. 49- 56 ,(1995) , 10.2118/24754-PA