On Inhomogeneous Diophantine Approximation and the Borweins’ Algorithm, II

作者: Takao Komatsu

DOI: 10.1007/978-1-4757-3621-2_15

关键词: Diophantine equationDiophantine approximationMathematicsAlgorithmCornacchia's algorithmDiscrete mathematics

摘要: We obtain the values.M(θ, O) = liminf|q|→∞ |q| ||qθ − O|| by using algorithm Borwein and Borwein. Some new results for O e l/s (s ≥ 1) are evaluated.

参考文章(9)
T. Komatsu, On inhomogeneous diophantine approximation with some quasi-periodic expressions, II Journal de Theorie des Nombres de Bordeaux. ,vol. 11, pp. 331- 344 ,(1999) , 10.1023/A:1006707704660
T.W. Cusick, A.M. Rockett, P. Szusz, On Inhomogeneous Diophantine Approximation Journal of Number Theory. ,vol. 48, pp. 259- 283 ,(1994) , 10.1006/JNTH.1994.1067
Kumiko Nishioka, Iekata Shiokawa, Jun-Ichi Tamura, Arithmetical properties of a certain power series Journal of Number Theory. ,vol. 42, pp. 61- 87 ,(1992) , 10.1016/0022-314X(92)90109-3
J.M. Borwein, P.B. Borwein, On the Generating Function of the Integer Part: [nα + γ] Journal of Number Theory. ,vol. 43, pp. 293- 318 ,(1993) , 10.1006/JNTH.1993.1023
J. W. S. Cassels, Über\(\mathop {\underline {\lim } }\limits_{x \to + \infty } x|\vartheta x + \alpha - y|\) Mathematische Annalen. ,vol. 127, pp. 288- 304 ,(1954) , 10.1007/BF01361127
Serge Lang, Number Theory III ,(1991)
Roger Descombes, Sur la répartition des sommets d'une ligne polygonale régulière non fermée Annales Scientifiques De L Ecole Normale Superieure. ,vol. 73, pp. 283- 355 ,(1956) , 10.24033/ASENS.1047