Morasses and finite support iterations

作者: Bernhard Irrgang

DOI: 10.1090/S0002-9939-08-09525-7

关键词: Construct (python library)Discrete mathematicsForcing (recursion theory)Suslin treeMathematics

摘要: We introduce a method of constructing forcing along simplified (k, 1)-morass such that the satisfies κ-chain condition. Alternatively, this may be seen as to thin out larger get chain As an application, we construct ccc adds ω 2 -Suslin tree. Related methods are Shelah's historic and Todorcevic's ρ-functions.

参考文章(21)
Charles Morgan, Local Connectedness and Distance Functions Birkhäuser Basel. pp. 345- 400 ,(2006) , 10.1007/3-7643-7692-9_14
Sy D. Friedman, Fine Structure and Class Forcing ,(2000)
Dan Velleman, Gap-2 Morasses of Height $\omega$ Journal of Symbolic Logic. ,vol. 52, pp. 928- 938 ,(1987) , 10.2307/2273827
Stevo Todorcevic, Partition problems in topology ,(1989)
Bernhard Irrgang, Kondensation und Moraste Ludwig-Maximilians-Universität München. ,(2002)
Mariusz Rabus, An ₂-minimal Boolean algebra Transactions of the American Mathematical Society. ,vol. 348, pp. 3235- 3244 ,(1996) , 10.1090/S0002-9947-96-01663-7
S. Tennenbaum, Souslin'S problem. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 59, pp. 60- 63 ,(1968) , 10.1073/PNAS.59.1.60
Juan Carlos Martínez, A consistency result on thin-very tall Boolean algebras Israel Journal of Mathematics. ,vol. 123, pp. 273- 284 ,(2001) , 10.1007/BF02784131
Dan Velleman, Simplified Gap-2 morasses Annals of Pure and Applied Logic. ,vol. 34, pp. 171- 208 ,(1987) , 10.1016/0168-0072(87)90070-4