Quasi-stability versus genericity

作者: Amir Hashemi , Michael Schweinfurter , Werner M. Seiler

DOI: 10.1007/978-3-642-32973-9_14

关键词: Local cohomologyBetti numberQuotientDiscrete mathematicsContrast (statistics)Pure mathematicsProperty (philosophy)Ideal (set theory)Stability (probability)Monomial idealMathematics

摘要: Quasi-stable ideals appear as leading in the theory of Pommaret bases. We show that quasi-stable share many properties generic initial ideal. In contrast to genericity, quasi-stability is a characteristic independent property can be effectively verified. also relate bases some invariants associated with local cohomology, exhibit existence linear quotients and prove results on componentwise ideals.

参考文章(28)
Generic Initial Ideals Six Lectures on Commutative Algebra. pp. 119- 186 ,(1998) , 10.1007/978-3-0346-0329-4_2
André Galligo, A propos du théorème de préparation de weierstrass Springer Berlin Heidelberg. pp. 543- 579 ,(1974) , 10.1007/BFB0068121
Marcus Hausdorf, Mehdi Sahbi, Werner M. Seiler, δ- and Quasi-Regularity for Polynomial Ideals ,(2006)
Jürgen Herzog, Takayuki Hibi, Componentwise linear ideals Nagoya Mathematical Journal. ,vol. 153, pp. 141- 153 ,(1999) , 10.1017/S0027763000006930
Leila Sharifan, Matteo Varbaro, Graded Betti numbers of ideals with linear quotient Le Matematiche. ,vol. 63, pp. 257- 265 ,(2009)
David Bayer, Michael Stillman, A criterion for detecting m -regularity Inventiones Mathematicae. ,vol. 87, pp. 1- 11 ,(1987) , 10.1007/BF01389151
David Bayer, Michael Stillman, A theorem on refining division orders by the reverse lexicographic order Duke Mathematical Journal. ,vol. 55, pp. 321- 328 ,(1987) , 10.1215/S0012-7094-87-05517-7