A METHOD FOR LINKING MICROARRAY DATA TO DATABASE INFORMATION

作者: Christina Diong

DOI: 10.20381/RUOR-9718

关键词: GenomeMicroarray analysis techniquesGene expression profilingHuman genomeMicroarray databasesComputer scienceMicroarrayGene chip analysisCluster analysisDatabase

摘要: Microarray technology is a new method of examining the whole genome expression profile. There are over 2,000 manuscripts in total published on microarray data analysis. also many database resources for genomic information. Although human largely known, degree to which each gene expressed not known. Numerous authors have addressed this problem using or Here, we develop an approach that links with available information spatially. This provide and alternative clustering tools differential expression. were pre-processed normalized so independent technology. Out 9,600 genes from original slide, there 8474 subsequent linkage database. The choice Gene Ontology (GO). Genomic was represented 2-dimensional map Correspondence Analysis (CA). then linked response surface methodology.

参考文章(22)
Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris Stoeckert, John Aach, Wilhelm Ansorge, Catherine A. Ball, Helen C. Causton, Terry Gaasterland, Patrick Glenisson, Frank C.P. Holstege, Irene F. Kim, Victor Markowitz, John C. Matese, Helen Parkinson, Alan Robinson, Ugis Sarkans, Steffen Schulze-Kremer, Jason Stewart, Ronald Taylor, Jaak Vilo, Martin Vingron, Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics. ,vol. 29, pp. 365- 371 ,(2001) , 10.1038/NG1201-365
John Quackenbush, Computational analysis of microarray data Nature Reviews Genetics. ,vol. 2, pp. 418- 427 ,(2001) , 10.1038/35076576
K. Fellenberg, N. C. Hauser, B. Brors, A. Neutzner, J. D. Hoheisel, M. Vingron, Correspondence analysis applied to microarray data Proceedings of the National Academy of Sciences of the United States of America. ,vol. 98, pp. 10781- 10786 ,(2001) , 10.1073/PNAS.181597298
Jin Hyuk KIm, Dong Mi Shin, Yong Sung Lee, Effect of local background intensities in the normalization of cDNA microarray data with a skewed expression profiles. Experimental and Molecular Medicine. ,vol. 34, pp. 224- 232 ,(2002) , 10.1038/EMM.2002.31
R. Sasik, E. Calvo, J. Corbeil, Statistical analysis of high-density oligonucleotide arrays: a multiplicative noise model. Bioinformatics. ,vol. 18, pp. 1633- 1640 ,(2002) , 10.1093/BIOINFORMATICS/18.12.1633
William S. Cleveland, Susan J. Devlin, Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting Journal of the American Statistical Association. ,vol. 83, pp. 596- 610 ,(1988) , 10.1080/01621459.1988.10478639
William S. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots Journal of the American Statistical Association. ,vol. 74, pp. 829- 836 ,(1979) , 10.1080/01621459.1979.10481038
Christian J. Stoeckert, Helen C. Causton, Catherine A. Ball, Microarray databases: standards and ontologies Nature Genetics. ,vol. 32, pp. 469- 473 ,(2002) , 10.1038/NG1028
A. I. Khuri, J. A. Cornell, Response surfaces : designs and analyses ,(1987)