The multivariate beta process and an extension of the Polya tree model

作者: L. Trippa , P. Muller , W. Johnson

DOI: 10.1093/BIOMET/ASQ072

关键词: Parametric modelPrior probabilityMathematicsMarginal distributionMarginal modelNonparametric regressionStatisticsNonparametric statisticsMultivariate normal distributionProbability distribution

摘要: We introduce a novel stochastic process that we term the multivariate beta process. The is defined for modelling-dependent random probabilities and has marginal distributions. use this to define probability model family of unknown distributions indexed by covariates. each distribution Polya tree prior. An important feature proposed prior easy centring nonparametric around any parametric regression model. implement inference survival can be adopted extend support models.

参考文章(22)
Timothy E Hanson, Inference for Mixtures of Finite Polya Tree Models Journal of the American Statistical Association. ,vol. 101, pp. 1548- 1565 ,(2006) , 10.1198/016214506000000384
Simeon Berman, A class of isotropic distributions in ${\bf R}^{n}$ and their characteristic functions. Pacific Journal of Mathematics. ,vol. 78, pp. 1- 9 ,(1978) , 10.2140/PJM.1978.78.1
David B. Dunson, Natesh Pillai, Ju-Hyun Park, Bayesian density regression Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 69, pp. 163- 183 ,(2007) , 10.1111/J.1467-9868.2007.00582.X
Stephen Walker, Pietro Muliere, A bivariate Dirichlet process Statistics & Probability Letters. ,vol. 64, pp. 1- 7 ,(2003) , 10.1016/S0167-7152(03)00124-X
James O Berger, Alessandra Guglielmi, Bayesian and Conditional Frequentist Testing of a Parametric Model Versus Nonparametric Alternatives Journal of the American Statistical Association. ,vol. 96, pp. 174- 184 ,(2001) , 10.1198/016214501750333045
Timothy Hanson, Wesley O Johnson, Modeling Regression Error With a Mixture of Polya Trees Journal of the American Statistical Association. ,vol. 97, pp. 1020- 1033 ,(2002) , 10.1198/016214502388618843
Yashaswini Mittal, A class of isotropic covariance functions. Pacific Journal of Mathematics. ,vol. 64, pp. 517- 538 ,(1976) , 10.2140/PJM.1976.64.517
R. Daniel Mauldin, William D. Sudderth, S. C. Williams, Polya Trees and Random Distributions Annals of Statistics. ,vol. 20, pp. 1203- 1221 ,(1992) , 10.1214/AOS/1176348766
Luis E. Nieto-Barajas, Stephen G. Walker, Gibbs and autoregressive Markov processes Statistics & Probability Letters. ,vol. 77, pp. 1479- 1485 ,(2007) , 10.1016/J.SPL.2007.02.015
Michael Lavine, More Aspects of Polya Tree Distributions for Statistical Modelling Annals of Statistics. ,vol. 20, pp. 1161- 1176 ,(1992) , 10.1214/AOS/1176325623