Contextual Sentiment Analysis in Social Media Using High-Coverage Lexicon

作者: Aminu Muhammad , Nirmalie Wiratunga , Robert Lothian , Richard Glassey

DOI: 10.1007/978-3-319-02621-3_6

关键词: High coverageNatural language processingSocial mediaArtificial intelligenceInformation retrievalNegationSentiment analysisValence (psychology)LexiconSentiment scoreComputer scienceIntensifier

摘要: Automatically generated sentiment lexicons offer information for a large number of terms and often at more granular level than manually ones. While such rich has the potential enhancing analysis, it also presents challenge finding best possible strategy to utilising information. In SentiWordNet, negation lexical valence shifters (i.e. intensifier diminisher terms) are associated with scores. Therefore, could either be treated as sentiment-bearing using scores offered by lexicon, or modifiers that influence assigned adjacent terms. this paper, we investigate suitability both these approaches applied classification. Further, explore role non-lexical common social media introduce score aggregation named SmartSA. Evaluation on three datasets show is effective outperform baseline aggregate-and-average approach.

参考文章(34)
Andrea Esuli, Stefano Baccianella, Fabrizio Sebastiani, SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. language resources and evaluation. ,(2010)
Andrea Esuli, Fabrizio Sebastiani, Determining Term Subjectivity and Term Orientation for Opinion Mining conference of the european chapter of the association for computational linguistics. pp. 193- 200 ,(2006)
Maria Soledad Pera, Rani Qumsiyeh, Yiu-Kai Ng, An Unsupervised Sentiment Classifier on Summarized or Full Reviews Web Information Systems Engineering – WISE 2010. pp. 142- 156 ,(2010) , 10.1007/978-3-642-17616-6_14
Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Sentiment strength detection for the social web Journal of the Association for Information Science and Technology. ,vol. 63, pp. 163- 173 ,(2012) , 10.1002/ASI.21662
Mike Thelwall, Arvid Kappas, Georgios Paltoglou, Kevan Buckley, Di Cai, Sentiment in short strength detection informal text Journal of the Association for Information Science and Technology. ,vol. 61, pp. 2544- 2558 ,(2010) , 10.1002/ASI.V61:12
Adam Kilgarriff, Christiane Fellbaum, WordNet : an electronic lexical database Language. ,vol. 76, pp. 706- ,(2000) , 10.2307/417141
Alexander Hogenboom, Paul van Iterson, Bas Heerschop, Flavius Frasincar, Uzay Kaymak, Determining negation scope and strength in sentiment analysis 2011 IEEE International Conference on Systems, Man, and Cybernetics. pp. 2589- 2594 ,(2011) , 10.1109/ICSMC.2011.6084066
WILLIAM C. MANN, SANDRA A. THOMPSON, Rhetorical Structure Theory : Toward a Functional Theory of Text Organization Text - Interdisciplinary Journal for the Study of Discourse. ,vol. 8, pp. 243- 281 ,(1988) , 10.1515/TEXT.1.1988.8.3.243
Georgios Paltoglou, Mike Thelwall, Twitter, MySpace, Digg ACM Transactions on Intelligent Systems and Technology. ,vol. 3, pp. 1- 19 ,(2012) , 10.1145/2337542.2337551