On asymptotic limits for the quantum Heisenberg model

作者: J G Conlon , J P Solovej

DOI: 10.1088/0305-4470/23/14/018

关键词: Quantum limitQuantum channelMathematicsClassical limitMathematical physicsQuantum algorithmQuantum dynamicsQuantum dissipationQuantum mechanicsClassical capacityMethod of quantum characteristics

摘要: The authors discuss various asymptotic limits of the classical and quantum Heisenberg model. They give a new proof that thermodynamic free energy model converges to in limit large spins. also obtain Gaussian Bose gas for models respectively.

参考文章(10)
Barry Simon, The classical limit of quantum partition functions Communications in Mathematical Physics. ,vol. 71, pp. 247- 276 ,(1980) , 10.1007/BF01197294
Elliott H. Lieb, The Classical Limit of Quantum Spin Systems Communications in Mathematical Physics. ,vol. 31, pp. 327- 340 ,(1973) , 10.1007/BF01646493
G. Roepstorff, A stronger version of Bogoliubov's inequality and the Heisenberg model Communications in Mathematical Physics. ,vol. 53, pp. 143- 150 ,(1977) , 10.1007/BF01609128
W. Fuller, A. Lenard, Generalized quantum spins, coherent states, and Lieb inequalities Communications in Mathematical Physics. ,vol. 67, pp. 69- 84 ,(1979) , 10.1007/BF01223201
Freeman J. Dyson, General Theory of Spin-Wave Interactions Physical Review. ,vol. 102, pp. 1217- 1230 ,(1956) , 10.1103/PHYSREV.102.1217
Jean Bricmont, Jean-Raymond Fontaine, Joel L. Lebowitz, Elliott H. Lieb, Thomas Spencer, Lattice Systems with a Continuous Symmetry III. Low Temperature Asymptotic Expansion for the Plane Rotator Model Communications in Mathematical Physics. ,vol. 78, pp. 545- 566 ,(1981) , 10.1007/BF02046764
Kenneth Millard, Harvey S. Leff, Infinite‐Spin Limit of the Quantum Heisenberg Model Journal of Mathematical Physics. ,vol. 12, pp. 1000- 1005 ,(1971) , 10.1063/1.1665664
N. D. Mermin, Absence of Ordering in Certain Classical Systems Journal of Mathematical Physics. ,vol. 8, pp. 1061- 1064 ,(1967) , 10.1063/1.1705316