Chaos, Periodicity and Complexity on Dynamical Systems

作者: Francisco Balibrea

DOI: 10.1007/3-540-31757-0_1

关键词: Periodic pointLyapunov exponentDynamical systems theoryStatistical physicsCHAOS (operating system)Periodic orbitsMathematics

摘要:

参考文章(66)
F. Balibrea, A. Linero, Periodic structure of $ \sigma $-permutations maps on In Aequationes mathematicae. ,vol. 62, pp. 265- 279 ,(2001) , 10.1007/PL00000152
Grzegorz Świrszcz, On a certain map of a triangle Fundamenta Mathematicae. ,vol. 155, pp. 45- 57 ,(1998)
Mariusz Lemańczyk, The sequence entropy for Morse shifts and some counterexamples Studia Mathematica. ,vol. 82, pp. 221- 241 ,(1985) , 10.4064/SM-82-3-221-241
Yael N. Dowker, Review: P. R. Halmos, Lectures on ergodic theory Bulletin of the American Mathematical Society. ,vol. 65, pp. 253- 254 ,(1959) , 10.1090/S0002-9904-1959-10331-1
Sam B. Nadler, Continuum Theory: An Introduction ,(1992)
Ll. Alsedà, S. Kolyada, J. Llibre, L. Snoha, Axiomatic definition of the topological entropy on the interval aequationes mathematicae. ,vol. 65, pp. 113- 132 ,(2003) , 10.1007/S000100300008
Karl Sigmund, Manfred Denker, Christian Grillenberger, Ergodic Theory on Compact Spaces ,(1976)
M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings Studia Mathematica. ,vol. 67, pp. 45- 63 ,(1980) , 10.4064/SM-67-1-45-63
Michal Misiurewicz, Jaume Llibre, Lluís Alsedà, Combinatorial Dynamics and Entropy in Dimension One ,(1993)