The Generalized Estimating Equation Approach When Data are Not Missing Completely at Random

作者: Myunghee Cho Paik

DOI: 10.1080/01621459.1997.10473653

关键词: Importance samplingWeightingEstimatorStatisticsGeneralized estimating equationImputation (statistics)Missing dataEstimating equationsMathematicsGee

摘要: Abstract We propose two methods for handling missing data in generalized estimating equation (GEE) analyses: mean imputation and multiple imputation. Each provides valid GEE estimates when are at random. Missing outcomes imputed sequentially starting from the outcome nearest time to observed outcome. The estimators kinds of compared with weighting method Robins et al. show that an infinite number replications is asymptotically equivalent applied a stroke study which neurological measured over after but some due death or loss follow up.

参考文章(14)
Joseph L. Schafer, [Multiple-Imputation Inferences with Uncongenial Sources of Input]: Comment Statistical Science. ,vol. 9, pp. 560- 561 ,(1994) , 10.1214/SS/1177010271
Donald B. Rubin, Nathaniel Schenker, Multiple Imputation for Interval Estimation from Simple Random Samples with Ignorable Nonresponse Journal of the American Statistical Association. ,vol. 81, pp. 366- 374 ,(1986) , 10.1080/01621459.1986.10478280
Fang Xie, Myunghee Cho Paik, Generalized Estimating Equation Model for Binary Outcomes with Missing Covariates Biometrics. ,vol. 53, pp. 1458- 1466 ,(1997) , 10.2307/2533511
T K Tatemichi, M Paik, E Bagiella, D W Desmond, M Pirro, L K Hanzawa, Dementia after stroke is a predictor of long-term survival. Stroke. ,vol. 25, pp. 1915- 1919 ,(1994) , 10.1161/01.STR.25.10.1915
Donald B. Rubin, Formalizing Subjective Notions about the Effect of Nonrespondents in Sample Surveys Journal of the American Statistical Association. ,vol. 72, pp. 538- 543 ,(1977) , 10.1080/01621459.1977.10480610
Roderick JA Little, None, Survey Nonresponse Adjustments for Estimates of Means International Statistical Review. ,vol. 54, pp. 139- 157 ,(1986) , 10.2307/1403140
James M. Robins, Andrea Rotnitzky, Semiparametric Efficiency in Multivariate Regression Models with Missing Data Journal of the American Statistical Association. ,vol. 90, pp. 122- 129 ,(1995) , 10.1080/01621459.1995.10476494
Roderick JA Little, Donald B Rubin, None, Statistical Analysis with Missing Data ,(1987)
LUE PING ZHAO, ROSS L. PRENTICE, Correlated binary regression using a quadratic exponential model Biometrika. ,vol. 77, pp. 642- 648 ,(1990) , 10.1093/BIOMET/77.3.642
DONALD B. RUBIN, Inference and missing data Biometrika. ,vol. 63, pp. 581- 592 ,(1976) , 10.1093/BIOMET/63.3.581