Universal behavior in nonlinear systems

作者: Mitchell J. Feigenbaum

DOI: 10.1016/0167-2789(83)90112-4

关键词: Scaling theoryNonlinear systemControl theoryStatistical physicsPeriod-doubling bifurcationMathematicsCHAOS (operating system)

摘要: … Just as linearity in any system implies a definite method of solution, folding nonlinearity in any system also implies a definite method of solution. In fact folding nonlinearity in the …

参考文章(9)
Mitchell J. Feigenbaum, The transition to aperiodic behavior in turbulent systems Communications in Mathematical Physics. ,vol. 77, pp. 65- 86 ,(1980) , 10.1007/BF01205039
Mitchell J. Feigenbaum, The onset spectrum of turbulence Physics Letters A. ,vol. 74, pp. 375- 378 ,(1979) , 10.1016/0375-9601(79)90227-5
A. Libchaber, C. Laroche, S. Fauve, Period doubling cascade in mercury, a quantitative measurement Journal de Physique Lettres. ,vol. 43, pp. 211- 216 ,(1982) , 10.1051/JPHYSLET:01982004307021100
Marzio Giglio, Sergio Musazzi, Umberto Perini, Transition to Chaotic Behavior via a Reproducible Sequence of Period-Doubling Bifurcations Physical Review Letters. ,vol. 47, pp. 243- 246 ,(1981) , 10.1103/PHYSREVLETT.47.243
Robert M. May, Simple mathematical models with very complicated dynamics Nature. ,vol. 261, pp. 459- 467 ,(1976) , 10.1038/261459A0
Mitchell J. Feigenbaum, The universal metric properties of nonlinear transformations Journal of Statistical Physics. ,vol. 21, pp. 669- 706 ,(1979) , 10.1007/BF01107909
Mitchell J. Feigenbaum, Quantitative universality for a class of nonlinear transformations Journal of Statistical Physics. ,vol. 19, pp. 25- 52 ,(1978) , 10.1007/BF01020332