作者: Z. Brzeźniak , S. Cerrai , M. Freidlin
DOI: 10.1007/S00440-014-0584-6
关键词: Noise (electronics) 、 Gaussian noise 、 Domain (mathematical analysis) 、 White noise 、 Space time 、 Mathematical analysis 、 Bounded function 、 Square-integrable function 、 Mathematics 、 Space (mathematics)
摘要: We are dealing with the Navier-Stokes equation in a bounded regular domain $$\mathcal {O}$$ of $$\mathbb {R}^2$$ , perturbed by an additive Gaussian noise $$\partial w^{Q_\delta }/\partial t$$ which is white time and colored space. assume that correlation radius gets smaller as $$\delta \searrow 0$$ so converges to space time. For every >0$$ we introduce large deviation action functional $$S^\delta _{T}$$ corresponding quasi-potential $$U_\delta $$ and, using arguments from relaxation $$\Gamma -convergence show $$U=U_0$$ spite fact has no meaning square integrable functions, when space-time noise. Moreover, case periodic boundary conditions limiting $$U$$ explicitly computed. Finally, apply these results estimate asymptotics expected exit solution stochastic basin attraction asymptotically stable point for unperturbed system.