Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise

作者: Z. Brzeźniak , S. Cerrai , M. Freidlin

DOI: 10.1007/S00440-014-0584-6

关键词: Noise (electronics)Gaussian noiseDomain (mathematical analysis)White noiseSpace timeMathematical analysisBounded functionSquare-integrable functionMathematicsSpace (mathematics)

摘要: We are dealing with the Navier-Stokes equation in a bounded regular domain $$\mathcal {O}$$ of $$\mathbb {R}^2$$ , perturbed by an additive Gaussian noise $$\partial w^{Q_\delta }/\partial t$$ which is white time and colored space. assume that correlation radius gets smaller as $$\delta \searrow 0$$ so converges to space time. For every >0$$ we introduce large deviation action functional $$S^\delta _{T}$$ corresponding quasi-potential $$U_\delta $$ and, using arguments from relaxation $$\Gamma -convergence show $$U=U_0$$ spite fact has no meaning square integrable functions, when space-time noise. Moreover, case periodic boundary conditions limiting $$U$$ explicitly computed. Finally, apply these results estimate asymptotics expected exit solution stochastic basin attraction asymptotically stable point for unperturbed system.

参考文章(43)
J. Zabczyk, On large deviations for stochastic evolution equations Lecture Notes in Control and Information Sciences. ,vol. 136, pp. 240- 253 ,(1989) , 10.1007/BFB0002685
Lamberto Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes Rendiconti del Seminario Matematico della Università di Padova. ,vol. 31, pp. 308- 340 ,(1961)
Hiroko Morimoto, Daisuke Fujiwara, An L_r-theorem of the Helmholtz decomposition of vector fields Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. ,vol. 24, pp. 685- 700 ,(1977)
Jörgen Löfström, Jöran Bergh, Interpolation Spaces: An Introduction ,(2011)
R. Seeley, Interpolation in $L^{p}$ with boundary conditions Studia Mathematica. ,vol. 44, pp. 47- 60 ,(1972) , 10.4064/SM-44-1-47-60
Zdzisław Brzeźniak, Dariusz Ga̧tarek, Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces Stochastic Processes and their Applications. ,vol. 84, pp. 187- 225 ,(1999) , 10.1016/S0304-4149(99)00034-4
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions ,(1992)