Machine Learning for Plant Breeding and Biotechnology

作者: Mohsen Niazian , Gniewko Niedbała

DOI: 10.3390/AGRICULTURE10100436

关键词: Machine learningBiotechnologyArtificial neural networkStability (learning theory)PhenomicsSupport vector machineBig dataRandom forestStatistical modelArtificial intelligenceComputer scienceUnivariate

摘要: … grouping of different genotypes in various plant species by means … deep learning algorithms could be used for efficient genetic diversity assessment and classification of plant genotypes…

参考文章(141)
Samad Emamgholizadeh, M Parsaeian, Mehdi Baradaran, None, Seed yield prediction of sesame using artificial neural network European Journal of Agronomy. ,vol. 68, pp. 89- 96 ,(2015) , 10.1016/J.EJA.2015.04.010
Michael J. Kearsey, Harpal S. Pooni, The Genetical Analysis of Quantitative Traits ,(1996)
Rahmatollah KARIMIZADEH, Mohtasham MOHAMMADI, Naser SABAGHNI, Ali Akbar MAHMOODI, Barzo ROUSTAMI, Faramarz SEYYEDI, Fariba AKBARI, None, GGE Biplot Analysis of Yield Stability in Multi-environment Trials of Lentil Genotypes under Rainfed Condition Notulae Scientia Biologicae. ,vol. 5, pp. 256- 262 ,(2013) , 10.15835/NSB529067
RA Fischer, R Maurer, Drought resistance in spring wheat cultivars, 1. Grain yield responses. Crop & Pasture Science. ,vol. 29, pp. 897- 912 ,(1978) , 10.1071/AR9780897
KW Finlay, GN Wilkinson, The analysis of adaptation in a plant-breeding programme Crop & Pasture Science. ,vol. 14, pp. 742- 754 ,(1963) , 10.1071/AR9630742
C. S. LIN, M. R. BINNS, A SUPERIORITY MEASURE OF CULTIVAR PERFORMANCE FOR CULTIVAR × LOCATION DATA Canadian Journal of Plant Science. ,vol. 68, pp. 193- 198 ,(1988) , 10.4141/CJPS88-018
S. A. Eberhart, W. A. Russell, Stability Parameters for Comparing Varieties Crop Science. ,vol. 6, pp. 36- 40 ,(1966) , 10.2135/CROPSCI1966.0011183X000600010011X
J. M. González-Camacho, G. de los Campos, P. Pérez, D. Gianola, J. E. Cairns, G. Mahuku, R. Babu, J. Crossa, Genome-enabled prediction of genetic values using radial basis function neural networks Theoretical and Applied Genetics. ,vol. 125, pp. 759- 771 ,(2012) , 10.1007/S00122-012-1868-9