Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection

作者: Travis S. Hughes , Henry D. Wilson , Ian Mitchelle S. de Vera , Douglas J. Kojetin

DOI: 10.1371/JOURNAL.PONE.0134474

关键词: Bayesian information criterionModel selectionBayes' theoremAlgorithmNuclear magnetic resonance spectroscopyResidualSignal-to-noise ratioComputer scienceGaussian noiseDeconvolutionSpectral lineGeneral Biochemistry, Genetics and Molecular BiologyGeneral Agricultural and Biological SciencesGeneral Medicine

摘要: Fluorine (19F) NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D) 19F spectra proteins can be broad, irregular and complex, due to exchange probe nuclei between distinct electrostatic environments; therefore cannot deconvoluted analyzed an objective way using currently available software. We have developed Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC) objectively determine model (number peaks) would most likely produce the experimentally obtained data. The method also allows fitting intermediate spectra, is not supported by current software absence specific kinetic model. In methods, determination best data done manually through comparison residual error values, time consuming requires selection user. contrast, BIC used decond1d provides quantitative that penalizes complexity helping prevent over-fitting identification parsimonious decon1d program freely downloadable Python script at project website (https://github.com/hughests/decon1d/).

参考文章(20)
Ulrich L. Günther, Brian Schaffhausen, NMRKIN: simulating line shapes from two-dimensional spectra of proteins upon ligand binding. Journal of Biomolecular NMR. ,vol. 22, pp. 201- 209 ,(2002) , 10.1023/A:1014985726029
James Keeler, Understanding NMR Spectroscopy ,(2005)
Gordon Roberts, Structural and Dynamic Information on Ligand Binding Protein NMR Spectroscopy: Practical Techniques and Applications. pp. 221- 267 ,(2011) , 10.1002/9781119972006.CH7
Lu-Yun Lian, Gordon Roberts, Protein NMR spectroscopy : practical techniques and applications John wiley & sons. ,(2011)
Julianne L. Kitevski-LeBlanc, R. Scott Prosser, Current applications of 19F NMR to studies of protein structure and dynamics Progress in Nuclear Magnetic Resonance Spectroscopy. ,vol. 62, pp. 1- 33 ,(2012) , 10.1016/J.PNMRS.2011.06.003
Han Chen, Stéphane Viel, Fabio Ziarelli, Ling Peng, 19F NMR: a valuable tool for studying biological events. Chemical Society Reviews. ,vol. 42, pp. 7971- 7982 ,(2013) , 10.1039/C3CS60129C
Fred S. Guthery, Kenneth P. Burnham, David R. Anderson, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach The Journal of Wildlife Management. ,vol. 67, pp. 655- ,(2003) , 10.2307/3802723
Travis S. Hughes, Michael J. Chalmers, Scott Novick, Dana S. Kuruvilla, Mi Ra Chang, Theodore M. Kamenecka, Mark Rance, Bruce A. Johnson, Thomas P. Burris, Patrick R. Griffin, Douglas J. Kojetin, Ligand and Receptor Dynamics Contribute to the Mechanism of Graded PPARγ Agonism Structure. ,vol. 20, pp. 139- 150 ,(2012) , 10.1016/J.STR.2011.10.018
A.D. Bain, G.J. Duns, A new approach to the calculation of NMR lineshapes of exchanging systems Journal of Magnetic Resonance, Series A. ,vol. 112, pp. 258- 260 ,(1995) , 10.1006/JMRA.1995.1042
Evgenii L. Kovrigin, NMR line shapes and multi-state binding equilibria. Journal of Biomolecular NMR. ,vol. 53, pp. 257- 270 ,(2012) , 10.1007/S10858-012-9636-3