PARP16/ARTD15 Is a Novel Endoplasmic-Reticulum-Associated Mono-ADP-Ribosyltransferase That Interacts with, and Modifies Karyopherin-ß1

作者: Simone Di Paola , Massimo Micaroni , Giuseppe Di Tullio , Roberto Buccione , Maria Di Girolamo

DOI: 10.1371/JOURNAL.PONE.0037352

关键词: ImmunoprecipitationPoly ADP ribose polymeraseBiologyTransmembrane domainBiochemistryCell biologyKaryopherinEndoplasmic reticulumBeta KaryopherinsProtein structureMembrane protein

摘要: Background: Protein mono-ADP-ribosylation is a reversible post-translational modification that modulates the function of target proteins. The enzymes catalyze this reaction in mammalian cells are either bacterial pathogenic toxins or endogenous cellular ADP-ribosyltransferases. latter include members three different families proteins: well characterized arginine-specific ecto-enzymes ARTCs, two sirtuins and, more recently, novel poly(ADP-ribose) polymerase (PARP/ARTD) family have been suggested to act as mono-ADP-ribosyltransferases. Here, we report on characterisation human ARTD15, only known ARTD member with putative C-terminal transmembrane domain. Methodology/Principal Findings: Immunofluorescence and electron microscopy were performed characterise sub-cellular localisation which was found be associated membranes nuclear envelope endoplasmic reticulum. orientation ARTD15 determined using protease protection assay, shown tail-anchored protein cytosolic catalytic Importantly, by combining immunoprecipitation mass spectrometry cell lysates from over-expressing FLAG-ARTD15, identified karyopherin-s1, component trafficking machinery, molecular partner ARTD15. Finally, demonstrate mono-ADP-ribosyltransferase able induce ADP-ribosylation thus defining first substrate for enzyme. Conclusions/Significance: Our data reveal ADP-ribosyltransferase enzyme new intracellular location. identification karyopherin-s1 ARTD15-mediated ADP-ribosylation, hints at regulatory mechanism functions.

参考文章(75)
Myron K. Jacobson, Donna L. Coyle, Chinh Q. Vu, Hyuntae Kim, Elaine L. Jacobson, Preparation of cyclic ADP-ribose, 2'-phospho-cyclic ADP-ribose, and nicotinate adenine dinucleotide phosphate: possible second messengers of calcium signaling. Methods in Enzymology. ,vol. 280, pp. 265- 275 ,(1997) , 10.1016/S0076-6879(97)80118-8
E. L. Hewlett, R. Adamik, Su-Chen Tsai, J. Moss, D. A. Yost, J. A. Hsia, Amino acid-specific ADP-ribosylation. Sensitivity to hydroxylamine of [cysteine(ADP-ribose)]protein and [arginine(ADP-ribose)]protein linkages. Journal of Biological Chemistry. ,vol. 260, pp. 16187- 16191 ,(1985) , 10.1016/S0021-9258(17)36219-1
I. Wada, D. Rindress, P.H. Cameron, W.J. Ou, J.J. Doherty, D. Louvard, A.W. Bell, D. Dignard, D.Y. Thomas, J.J. Bergeron, SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. Journal of Biological Chemistry. ,vol. 266, pp. 19599- 19610 ,(1991) , 10.1016/S0021-9258(18)55036-5
Roman S. Polishchuk, Alexander A. Mironov, Correlative Video Light/Electron Microscopy Current protocols in pharmacology. ,vol. 11, ,(2001) , 10.1002/0471143030.CB0408S11
Jie Zhang, Use of biotinylated NAD to label and purify ADP-ribosylated proteins. Methods in Enzymology. ,vol. 280, pp. 255- 265 ,(1997) , 10.1016/S0076-6879(97)80117-6
J Moss, D A Yost, S J Stanley, Amino acid-specific ADP-ribosylation. Journal of Biological Chemistry. ,vol. 258, pp. 6466- 6470 ,(1983) , 10.1016/S0021-9258(18)32434-7
Helge Otto, Pedro A Reche, Fernando Bazan, Katharina Dittmar, Friedrich Haag, Friedrich Koch-Nolte, In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics. ,vol. 6, pp. 139- 139 ,(2005) , 10.1186/1471-2164-6-139
Paul O Hassa, Michael O Hottiger, The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases Frontiers in Bioscience. ,vol. 13, pp. 3046- 3082 ,(2008) , 10.2741/2909
Daniela Corda, Maria Di Girolamo, Functional aspects of protein mono‐ADP‐ribosylation The EMBO Journal. ,vol. 22, pp. 1953- 1958 ,(2003) , 10.1093/EMBOJ/CDG209