Stability index for chaotically driven concave maps

作者: Gerhard Keller

DOI: 10.1112/JLMS/JDT070

关键词: Almost everywhereLambdaHyperbolic functionMathematicsCombinatoricsAttractorExponentStability indexScalingMathematical analysisDiffeomorphism

摘要: We study skew product systems driven by a hyperbolic base map S (e.g. baker or an Anosov surface diffeomorphism) and with simple concave fibre maps on interval [0,a] like h(x)=g(\theta) tanh(x) where g(\theta) is factor the map. The fibre-wise attractor graph of upper semicontinuous function \phi(\theta). For many choices g, \phi has residual set zeros but \phi>0 almost everywhere w.r.t. Sinai-Ruelle-Bowen measure S^(-1). In such situations we evaluate stability index global system, which subgraph \phi, at all regular points (\theta,0) in terms local exponents \Gamma(\theta):=\lim_{n\to\infty} 1/n log g_n(\theta) \Lambda(\theta):=\lim_{n\to\infty} 1/n\log|D_u S^{-n}(\theta)| positive zero s_* certain thermodynamic pressure associated S^(-1) g. (In queuing theory, analogon known as Loyne's exponent.) The was introduced Podvigina Ashwin 2011 to quantify scaling basins attraction.

参考文章(19)
Gerhard Keller, A note on strange nonchaotic attractors Fundamenta Mathematicae. ,vol. 151, pp. 139- 148 ,(1996)
Viviane Baladi, Positive transfer operators and decay of correlations World Scientific. ,(2000) , 10.1142/3657
Mark Pollicott, Hausdorff dimension and asymptotic cycles Transactions of the American Mathematical Society. ,vol. 355, pp. 3241- 3252 ,(2003) , 10.1090/S0002-9947-03-03308-7
D. V. Lindley, The theory of queues with a single server Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 48, pp. 277- 289 ,(1952) , 10.1017/S0305004100027638
Gerhard Keller, Haider H. Jafri, Ram Ramaswamy, Nature of weak generalized synchronization in chaotically driven maps. Physical Review E. ,vol. 87, pp. 042913- ,(2013) , 10.1103/PHYSREVE.87.042913
XAVIER BRESSAUD, CARLANGELO LIVERANI, Anosov diffeomorphisms and coupling Ergodic Theory and Dynamical Systems. ,vol. 22, pp. 129- 152 ,(2002) , 10.1017/S0143385702000056
Gerhard Keller, Atsuya Otani, Bifurcation and Hausdorff dimension in families of chaotically driven maps with multiplicative forcing Dynamical Systems-an International Journal. ,vol. 28, pp. 123- 139 ,(2013) , 10.1080/14689367.2013.781267
R Sturman, J Stark, Semi-uniform ergodic theorems and applications to forced systems Nonlinearity. ,vol. 13, pp. 113- 143 ,(2000) , 10.1088/0951-7715/13/1/306