Control of Stochastic Quantum Dynamics with Differentiable Programming

作者: Christoph Bruder , Pavel Sekatski , Martin Koppenhöfer , Michal Kloc , Frank Schäfer

DOI: 10.1088/2632-2153/ABEC22

关键词: SolverQuantum systemSensitivity (control systems)Computer scienceControl theoryDifferentiable functionControl theoryQuantum stateTime evolutionHomodyne detectionStochastic differential equationQubitQuantum dynamics

摘要: Controlling stochastic dynamics of a quantum system is an indispensable task in fields such as information processing and metrology. Yet, there no general ready-made approach to design efficient control strategies. Here, we propose framework for the automated schemes based on differentiable programming ($\partial \mathrm{P}$). We apply this state preparation stabilization qubit subjected homodyne detection. To end, formulate optimization problem where loss function quantifies distance from target employ neural networks (NNs) controllers. The system's time evolution governed by differential equation (SDE). implement training, backpropagate gradient through SDE solver using adjoint sensitivity methods. As first example, feed controller focus different methods obtain gradients. second directly detection signal controller. instantaneous value current contains only very limited actual system, covered unavoidable photon-number fluctuations. Despite resulting poor signal-to-noise ratio, can train our prepare stabilize with mean fidelity around 85%. also compare solutions found NN hand-crafted strategy.

参考文章(72)
Howard Mark Wiseman, Gerard J. Milburn, Quantum Measurement and Control ,(2009)
Witlef Wieczorek, Sebastian G. Hofer, Jason Hoelscher-Obermaier, Ralf Riedinger, Klemens Hammerer, Markus Aspelmeyer, Optimal State Estimation for Cavity Optomechanical Systems Physical Review Letters. ,vol. 114, pp. 223601- 223601 ,(2015) , 10.1103/PHYSREVLETT.114.223601
Francesco Petruccione, Heinz-Peter Breuer, The Theory of Open Quantum Systems ,(2002)
S. Bose, P. L. Knight, M. B. Plenio, V. Vedral, Proposal for teleportation of an atomic state via cavity decay Physical Review Letters. ,vol. 83, pp. 5158- 5161 ,(1999) , 10.1103/PHYSREVLETT.83.5158
J Gough, V P Belavkin, O G Smolyanov, Hamilton-Jacobi-Bellman equations for quantum optimal feedback control Journal of Optics B-quantum and Semiclassical Optics. ,vol. 7, ,(2005) , 10.1088/1464-4266/7/10/006
Steffen J. Glaser, Ugo Boscain, Tommaso Calarco, Christiane P. Koch, Walter Köckenberger, Ronnie Kosloff, Ilya Kuprov, Burkhard Luy, Sophie Schirmer, Thomas Schulte-Herbrüggen, Dominique Sugny, Frank K. Wilhelm, Training Schrödinger’s cat: quantum optimal control European Physical Journal D. ,vol. 69, pp. 279- ,(2015) , 10.1140/EPJD/E2015-60464-1
R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch, R. Naik, A. N. Korotkov, I. Siddiqi, Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback Nature. ,vol. 490, pp. 77- 80 ,(2012) , 10.1038/NATURE11505
Jack P.C. Kleijnen, Reuven Y. Rubinstein, Optimization and sensitivity analysis of computer simulation models by the score function method European Journal of Operational Research. ,vol. 88, pp. 413- 427 ,(1996) , 10.1016/0377-2217(95)00107-7
Holger F. Hofmann, Günter Mahler, Ortwin Hess, Quantum control of atomic systems by homodyne detection and feedback Physical Review A. ,vol. 57, pp. 4877- 4888 ,(1998) , 10.1103/PHYSREVA.57.4877