Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems

作者: Jos F. Sturm

DOI: 10.1080/1055678021000045123

关键词: MathematicsOptimization problemQuadratically constrained quadratic programSemidefinite programmingContext (language use)Mathematical optimizationConic optimizationSemidefinite embeddingSecond-order cone programmingInterior point method

摘要: … primal–dual interior point method. An important design … interior point approach and the self-dual embedding approach. … In particular, no symmetric eigenvalue decomposition is needed…

参考文章(84)
Jacques Faraut, Adam Korányi, Analysis on Symmetric Cones ,(1995)
M. Overton, F. Alizadeh, J. P. Haeberly, A New Primal-Dual Interior-Point Method for Semidefinite Programming Univ. of Michigan, Ann Arbor, MI (United States). pp. 113- 117 ,(1994)
Leonid Faybusovich, Euclidean Jordan Algebras and Interior-point Algorithms Positivity. ,vol. 1, pp. 331- 357 ,(1997) , 10.1023/A:1009701824047
Hans Frenk, Kees Roos, Tamás Terlaky, Shuzhong Zhang, Central Region Method High Performance Optimization. pp. 157- 194 ,(2000) , 10.1007/978-1-4757-3216-0_7
Shinji Mizuno, Infeasible-Interior-Point Algorithms Springer, Boston, MA. pp. 159- 187 ,(1996) , 10.1007/978-1-4613-3449-1_5
Roger A. Horn, Charles R. Johnson, Matrix Analysis Cambridge University Press. ,(1985) , 10.1017/CBO9780511810817
Robert M. Freund, Shinji Mizuno, Interior point methods : current status and future directions Research Papers in Economics. pp. 441- 466 ,(1996) , 10.1007/978-1-4757-3216-0_18
Kim-Chuan Toh, A Note on the Calculation of Step-Lengths in Interior-Point Methods for Semidefinite Programming Computational Optimization and Applications. ,vol. 21, pp. 301- 310 ,(2002) , 10.1023/A:1013777203597
Masakazu Kojima, Shinji Mizuno, Akiko Yoshise, A Primal-Dual Interior Point Algorithm for Linear Programming Progress in Mathematical Programming. pp. 29- 47 ,(1989) , 10.1007/978-1-4613-9617-8_2