Calculated electrical and thermal resistivities of Nb and Pd

作者: F. J. Pinski , P. B. Allen , W. H. Butler

DOI: 10.1103/PHYSREVB.23.5080

关键词: Energy (signal processing)Condensed matter physicsFermi levelFermi surfaceOrder (ring theory)CoulombWave functionQuantum mechanicsScatteringPhysicsDistribution function

摘要: The electrical and thermal resistivities ($\ensuremath{\rho}$ $W$) of pure Nb Pd are calculated from nearly first principles. Realistic Korringa-Kohn-Rostoker energy bands wave functions, experimental phonon frequencies Born-von K\'arm\'an eigenvectors, rigid muffin-tin electron-phonon potentials used to generate the velocities scattering probabilities in Bloch-Boltzmann equation, at a mesh 48 000 points on Fermi surface. Solutions for $\ensuremath{\rho}$ $W$ exhibited three levels accuracy: (1) lowest-order variational approximation (LOVA) where surface displaces rigidly; (2) $N$-sheet different sheets displace independently; (3) fully inelastic calculation is distribution function allowed arbitrary variations with (normal surface) reflect inelasticity scattering. Above $T=100$ K, corrections LOVA order 1%, but below both give large results. These results also compared Bloch-Gr\"uneisen formulas fitted $T\ensuremath{\sim}{\ensuremath{\Theta}}_{D}$. In range $100 \mathrm{K}\ensuremath{\lesssim}T\ensuremath{\lesssim}300 \mathrm{K}$, calculations exceed by \ensuremath{\sim} 10%. Good agreement persists into $10 \mathrm{K}\ensuremath{\lesssim}T\ensuremath{\lesssim}100 except that theory underestimates experiment significantly lower-temperature end, suggesting possible error models small $\stackrel{\ensuremath{\rightarrow}}{\mathrm{Q}}$ interpretation complicated Coulomb effects. Below $T=10$ finite size prevents reliable calculations. Simple such as inadequate account data. Mott's (1936) "$s\ensuremath{-}d$" picture shown be qualitatively correct Pd. Extension this was suggested subsequently various authors, present does not support this.

参考文章(36)
Felix Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern European Physical Journal. ,vol. 52, pp. 555- 600 ,(1929) , 10.1007/BF01339455
J. Yamashita, S. Asano, Electrical Resistivity of Transition Metals. I Progress of Theoretical Physics. ,vol. 51, pp. 317- 326 ,(1974) , 10.1143/PTP.51.317B
F. J. Pinski, P. B. Allen, W. H. Butler, Electron-phonon contribution to electrical resistivity and superconducting ''p-wave'' transition temperature of Pd Physical Review Letters. ,vol. 41, pp. 431- 434 ,(1978) , 10.1103/PHYSREVLETT.41.431
W. H. Butler, H. G. Smith, N. Wakabayashi, Electron-Phonon Contribution to the Phonon Linewidth in Nb: Theory and Experiment Physical Review Letters. ,vol. 39, pp. 1004- 1007 ,(1977) , 10.1103/PHYSREVLETT.39.1004
W. H. Butler, F. J. Pinski, P. B. Allen, Phonon linewidths and electron-phonon interaction in Nb Physical Review B. ,vol. 19, pp. 3708- 3721 ,(1979) , 10.1103/PHYSREVB.19.3708
D. Gl�tzel, D. Rainer, H. R. Schober, Ab initio calculation of the superconducting transition temperature European Physical Journal B. ,vol. 35, pp. 317- 326 ,(1979) , 10.1007/BF01332692
P. B. Allen, New method for solving Boltzmann's equation for electrons in metals Physical Review B. ,vol. 17, pp. 3725- 3734 ,(1978) , 10.1103/PHYSREVB.17.3725
T. Holstein, Theory of transport phenomena in an electron-phonon gas Annals of Physics. ,vol. 29, pp. 410- 535 ,(1964) , 10.1016/0003-4916(64)90008-9