Not-so-complex logarithms in the Heston model

作者: Christian Kahl , Peter J

DOI:

关键词: Mean reversionStochastic volatilityFourier transformInverseHeston modelMathematical economicsLogarithmAnalyticsApplied mathematicsEconomicsNumerical stability

摘要: In Heston’s stochastic volatility framework [ Hes93], semi-analytical formulae for plain vanilla option prices can be derived. Unfortunately, these require the evaluation of logarithms with complex arguments during involved inverse Fourier integration step. This gives rise to an inherent numerical instability as a consequence which most implementations are not robust moderate long dated maturities or strong mean reversion. this article, we propose new approach solve problem enables use analytics practically all levels parameters and even many decades.

参考文章(6)
Peter Carr, Dilip Madan, Option valuation using the fast Fourier transform The Journal of Computational Finance. ,vol. 2, pp. 61- 73 ,(1999) , 10.21314/JCF.1999.043
Walter Gander, Walter Gautschi, Adaptive Quadrature—Revisited Bit Numerical Mathematics. ,vol. 40, pp. 84- 101 ,(2000) , 10.1023/A:1022318402393
Roger Lee, Option pricing by transform methods: extensions, unification and error control The Journal of Computational Finance. ,vol. 7, pp. 51- 86 ,(2004) , 10.21314/JCF.2004.121
Rainer Schöbel, Jianwei Zhu, Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension Review of Finance. ,vol. 3, pp. 23- 46 ,(1999) , 10.1023/A:1009803506170