Novel mixtures based on the dirichlet distribution: application to data and image classification

作者: Nizar Bouguila , Djemel Ziou , Jean Vaillancourt

DOI: 10.1007/3-540-45065-3_15

关键词: Multinomial distributionPattern recognitionDirichlet distributionContextual image classificationGeneralized Dirichlet distributionMathematicsDirichlet problemGaussian processDirichlet-multinomial distributionData modelingArtificial intelligence

摘要: The Dirichlet distribution offers high flexibility for modeling data. This paper describes two new mixtures based on this density: the GDD (Generalized Distribution) and MDD (Multinomial mixtures. These will be used to model continuous discrete data, respectively. We propose a method estimating parameters of these performance our is tested by contextual evaluations. In evaluations we compare Gaussian in classification several pattern-recognition data sets apply mixture problem summarizing image databases.

参考文章(13)
Finding Groups in Data John Wiley & Sons, Inc.. ,(1990) , 10.1002/9780470316801
Shun-ichi Amari, Natural gradient works efficiently in learning Neural Computation. ,vol. 10, pp. 177- 202 ,(1998) , 10.1162/089976698300017746
H. Charles Romesburg, ESTIMATION OF PARAMETERS IN THE BETA DISTRIBUTION: COMMENT Decision Sciences. ,vol. 7, pp. 162- 162 ,(1976) , 10.1111/J.1540-5915.1976.TB00666.X
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Shiro Ikeda, Acceleration of the EM algorithm Systems and Computers in Japan. ,vol. 31, pp. 10- 18 ,(2000) , 10.1002/(SICI)1520-684X(200002)31:2<10::AID-SCJ2>3.0.CO;2-D
Jeffrey D. Banfield, Adrian E. Raftery, Model-based Gaussian and non-Gaussian clustering Biometrics. ,vol. 49, pp. 803- 821 ,(1993) , 10.2307/2532201
Sybil L. Crawford, An Application of the Laplace Method to Finite Mixture Distributions Journal of the American Statistical Association. ,vol. 89, pp. 259- 267 ,(1994) , 10.1080/01621459.1994.10476467
Brian Everitt, D. J. Hand, Finite Mixture Distributions ,(1981)
Samuel Kotz, Kai-Tai Fang, Kai Wang Ng, Symmetric Multivariate and Related Distributions ,(1989)
Bruce D. Fielitz, Buddy L. Myers, CONCEPTS, THEORY, AND TECHNIQUES Decision Sciences. ,vol. 6, pp. 1- 13 ,(1975) , 10.1111/J.1540-5915.1975.TB00992.X