Population Graph GNNs for Brain Age Prediction

作者: Kamilė Stankevičiūtė , Tiago Azevedo , Alexander Campbell , Richard Bethlehem , Pietro Liò

DOI: 10.1101/2020.06.26.172171

关键词: PopulationGraph (abstract data type)ConfoundingAgeingDementiaMultiple sclerosisMedicineNeuroscienceModalitiesNeuroimaging

摘要: Many common neurological and neurodegenerative disorders, such as Alzheimer9s disease, dementia multiple sclerosis, have been associated with abnormal patterns of apparent ageing the brain. Discrepancies between estimated brain age actual chronological (brain gaps) can be used to understand biological pathways behind process, assess an individual9s risk for various disorders identify new personalised treatment strategies. By flexibly integrating minimally preprocessed neuroimaging non-imaging modalities into a population graph data structure, we train two types neural network (GNN) architectures predict in clinically relevant fashion well investigate their robustness noisy inputs sparsity. The multimodal approach has potential learn from entire cohort healthy affected subjects both sexes at once, capturing wide range confounding effects detecting variations trends different sub-populations subjects.

参考文章(26)
Matthew F. Glasser, Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S. Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster, Jonathan R. Polimeni, David C. Van Essen, Mark Jenkinson, The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage. ,vol. 80, pp. 105- 124 ,(2013) , 10.1016/J.NEUROIMAGE.2013.04.127
Cheryl L Grady, Fergus IM Craik, Changes in memory processing with age. Current Opinion in Neurobiology. ,vol. 10, pp. 224- 231 ,(2000) , 10.1016/S0959-4388(00)00073-8
Matthias Kliegel, Theodor Jager, Delayed-execute prospective memory performance: the effects of age and working memory. Developmental Neuropsychology. ,vol. 30, pp. 819- 843 ,(2006) , 10.1207/S15326942DN3003_4
Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey, Paul Elliott, Jane Green, Martin Landray, Bette Liu, Paul Matthews, Giok Ong, Jill Pell, Alan Silman, Alan Young, Tim Sprosen, Tim Peakman, Rory Collins, UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age PLOS Medicine. ,vol. 12, ,(2015) , 10.1371/JOURNAL.PMED.1001779
Amber N.V. Ruigrok, Gholamreza Salimi-Khorshidi, Meng-Chuan Lai, Simon Baron-Cohen, Michael V. Lombardo, Roger J. Tait, John Suckling, A meta-analysis of sex differences in human brain structure Neuroscience & Biobehavioral Reviews. ,vol. 39, pp. 34- 50 ,(2014) , 10.1016/J.NEUBIOREV.2013.12.004
Carol Brayne, Paul G. Ince, Hannah A. D. Keage, Ian G. McKeith, Fiona E. Matthews, Tuomo Polvikoski, Raimo Sulkava, Education, the brain and dementia: neuroprotection or compensation? Brain. ,vol. 133, pp. 2210- 2216 ,(2010) , 10.1093/BRAIN/AWQ185
Christian Gaser, Katja Franke, Stefan Klöppel, Nikolaos Koutsouleris, Heinrich Sauer, Alzheimer's Disease Neuroimaging Initiative, BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease PLoS ONE. ,vol. 8, pp. e67346- ,(2013) , 10.1371/JOURNAL.PONE.0067346
Jeremy R. Gray, Christopher F. Chabris, Todd S. Braver, Neural mechanisms of general fluid intelligence. Nature Neuroscience. ,vol. 6, pp. 316- 322 ,(2003) , 10.1038/NN1014
Juergen Dukart, Matthias L Schroeter, Karsten Mueller, Alzheimer's Disease Neuroimaging Initiative, Age Correction in Dementia – Matching to a Healthy Brain PLoS ONE. ,vol. 6, pp. e22193- ,(2011) , 10.1371/JOURNAL.PONE.0022193
Jason Steffener, Christian Habeck, Deirdre O'Shea, Qolamreza Razlighi, Louis Bherer, Yaakov Stern, Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiology of Aging. ,vol. 40, pp. 138- 144 ,(2016) , 10.1016/J.NEUROBIOLAGING.2016.01.014