Physically short fatigue crack growth from notch described by plasticity-corrected stress intensity factor

作者: Li Meng , Menghao Yang , Xiuhua Chen , Yandong Hu , Miaolin Feng

DOI: 10.1016/J.IJMECSCI.2020.105544

关键词: Power functionGrowth rateTension (physics)Paris' lawMaterials scienceSignificant differenceComposite materialPlasticityNumerical analysisStress intensity factor

摘要: Abstract When a physically short fatigue crack propagates from notch root, the growth rate shows “V-shaped” behavior; i.e., firstly decreases and then increases as propagates. In this study, plasticity-corrected stress intensity factor (PC-SIF) is applied to describe effects of both notch's plastic zone crack-tip's in ductile materials under cyclic loading. Experiments previous study for disk-shaped compact tension (CT) specimens made 1070 steel with different sizes load ratios, well single-edged low-carbon U-shaped notches, are examined by numerical analysis present paper. The V-shaped curves data can be summarized straight lines if PC-SIF range which considers influence near roots. root plays an important role behavior crack, evolution discussed detail. ratio (SIF) was fitted power functions fitting expressions before after turning point curve exhibit significant difference.

参考文章(58)
Uwe Zerbst, Michael Vormwald, Reinhard Pippan, Hans-Peter Gänser, Christine Sarrazin-Baudoux, Mauro Madia, About the fatigue crack propagation threshold of metals as a design criterion – A review Engineering Fracture Mechanics. ,vol. 153, pp. 190- 243 ,(2016) , 10.1016/J.ENGFRACMECH.2015.12.002
José A. F. O. Correia, Abílio M. P. De Jesus, Pedro M. G. P. Moreira, Paulo J. S. Tavares, Crack Closure Effects on Fatigue Crack Propagation Rates: Application of a Proposed Theoretical Model Advances in Materials Science and Engineering. ,vol. 2016, pp. 3026745- ,(2016) , 10.1155/2016/3026745
P.J. Huffman, A strain energy based damage model for fatigue crack initiation and growth International Journal of Fatigue. ,vol. 88, pp. 197- 204 ,(2016) , 10.1016/J.IJFATIGUE.2016.03.032
B. Alfredsson, I. Linares Arregui, S. Hazar, Numerical analysis of plasticity effects on fatigue growth of a short crack in a bainitic high strength bearing steel International Journal of Fatigue. ,vol. 92, pp. 36- 51 ,(2016) , 10.1016/J.IJFATIGUE.2016.06.030
J.A.F.O. Correia, S. Blasón, A. Arcari, M. Calvente, N. Apetre, P.M.G.P. Moreira, A.M.P. De Jesus, A.F. Canteli, Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closure Theoretical and Applied Fracture Mechanics. ,vol. 85, pp. 26- 36 ,(2016) , 10.1016/J.TAFMEC.2016.08.024
Junhui Tao, Longbo Ji, Shubing Hu, An investigation of the small fatigue crack growth behavior in Ti-6.5Al-2Zr-1Mo-1V alloy Journal of Alloys and Compounds. ,vol. 695, pp. 2764- 2772 ,(2017) , 10.1016/J.JALLCOM.2016.11.207
SC Wu, ZW Xu, Cheng Yu, OL Kafka, WK Liu, None, A physically short fatigue crack growth approach based on low cycle fatigue properties International Journal of Fatigue. ,vol. 103, pp. 185- 195 ,(2017) , 10.1016/J.IJFATIGUE.2017.05.006
P Hutař, J Poduška, M Šmíd, Ivo Kuběna, A Chlupová, L Náhlík, J Polák, T Kruml, None, Short fatigue crack behaviour under low cycle fatigue regime International Journal of Fatigue. ,vol. 103, pp. 207- 215 ,(2017) , 10.1016/J.IJFATIGUE.2017.06.002
J.A.F.O. Correia, P.J. Huffman, A.M.P. De Jesus, S. Cicero, A. Fernández-Canteli, F. Berto, G. Glinka, Unified two-stage fatigue methodology based on a probabilistic damage model applied to structural details Theoretical and Applied Fracture Mechanics. ,vol. 92, pp. 252- 265 ,(2017) , 10.1016/J.TAFMEC.2017.09.004
P. J. Huffman, J. Ferreira, J.A.F.O. Correia, A.M.P. De Jesus, G. Lesiuk, F. Berto, A. Fernandez-Canteli, G. Glinka, Fatigue crack propagation prediction of a pressure vessel mild steel based on a strain energy density model Fracture and Structural Integrity. ,vol. 11, pp. 74- 84 ,(2017) , 10.3221/IGF-ESIS.42.09