On scaling relations in growth models for percolating clusters and diffusion fronts

作者: A Bunde , J F Gouyet

DOI: 10.1088/0305-4470/18/6/004

关键词: MathematicsPercolationExponentYield (engineering)Fractal dimensionFront (oceanography)Cluster (physics)ScalingDiffusion (business)Mathematical analysis

摘要: Employing analogies between the growth of incipient percolating cluster and a diffusion front, authors develop scaling theory for this latter model. Their assumptions support Sapoval-Rosso-Gouyet conjecture, dH=1+1/ nu , which relates, in two dimensions, fractal dimension dH hull to correlation length exponent percolation, yield relations static dynamic exponents front.

参考文章(6)
P L Leath, G R Reich, Scaling form for percolation cluster sizes and perimeters Journal of Physics C: Solid State Physics. ,vol. 11, pp. 4017- 4036 ,(1978) , 10.1088/0022-3719/11/19/013
Amnon Aharony, D. Stauffer, Possible Breakdown of the Alexander-Orbach Rule at Low Dimensionalities Physical Review Letters. ,vol. 52, pp. 2368- 2370 ,(1984) , 10.1103/PHYSREVLETT.52.2368
Francois Leyvraz, H. Eugene Stanley, To What Class of Fractals Does the Alexander-Orbach Conjecture Apply? Physical Review Letters. ,vol. 51, pp. 2048- 2051 ,(1983) , 10.1103/PHYSREVLETT.51.2048
H. E. Stanley, I. Majid, A. Margolina, A. Bunde, Direct Tests of the Aharony-Stauffer Argument Physical Review Letters. ,vol. 53, pp. 1706- 1706 ,(1984) , 10.1103/PHYSREVLETT.53.1706
D Ben-Avraham, S Havlin, Diffusion on percolation clusters at criticality Journal of Physics A. ,vol. 15, ,(1982) , 10.1088/0305-4470/15/12/007
R F Voss, The fractal dimension of percolation cluster hulls Journal of Physics A. ,vol. 17, ,(1984) , 10.1088/0305-4470/17/7/001