LOCAL INVARIANCE VIA COMPARISON FUNCTIONS

作者: Ioan I. Vrabie , Mihai Necula , Ovidiu C

DOI:

关键词: MathematicsExistential quantificationFunction (mathematics)AlgorithmDiscrete mathematics

摘要: We consider the ordinary dierential equation 0 (t) = f(t,u(t)), where f : (a,b) ◊ D ! R n is a given function, while an open subset in . prove that, if K locally closed and there exists comparison

参考文章(17)
R. M. Redheffer, The Theorems of Bony and Brezis on Flow-Invariant Sets American Mathematical Monthly. ,vol. 79, pp. 740- 747 ,(1972) , 10.1080/00029890.1972.11993115
Jean-Pierre Aubin, Viability theory ,(1991)
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, Invariance, monotonicity, and applications Springer Netherlands. pp. 207- 305 ,(1999) , 10.1007/978-94-011-4560-2_4
Corneliu Ursescu, Evolutors and Invariance Set-valued Analysis. ,vol. 11, pp. 69- 89 ,(2003) , 10.1023/A:1021976618557
Mitio Nagumo, Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen Proceedings of the Physico-Mathematical Society of Japan. 3rd Series. ,vol. 24, pp. 551- 559 ,(1942) , 10.11429/PPMSJ1919.24.0_551
J. W. Bebernes, J. D. Schuur, The Wazewski topological method for contingent equations Annali di Matematica Pura ed Applicata. ,vol. 87, pp. 271- 279 ,(1970) , 10.1007/BF02411980
Oskar Perron, Ein neuer Existenzbeweis für die Integrale der Differentialgleichung y′=f(x,y) Mathematische Annalen. ,vol. 76, pp. 471- 484 ,(1915) , 10.1007/BF01458218
Philip Hartman, On invariant sets and on a theorem of Ważewski Proceedings of the American Mathematical Society. ,vol. 32, pp. 511- 520 ,(1972) , 10.1090/S0002-9939-1972-0298091-7
Frank H. Clarke, Generalized gradients and applications Transactions of the American Mathematical Society. ,vol. 205, pp. 247- 262 ,(1975) , 10.1090/S0002-9947-1975-0367131-6