Learning to detect Android malware via opcode sequences

作者: Abdurrahman Pektaş , Tankut Acarman

DOI: 10.1016/J.NEUCOM.2018.09.102

关键词: Network architectureAndroid (operating system)Deep learningData miningArtificial intelligenceMalwareAndroid malwareComputer scienceOpcode

摘要: … trained to approximate nonlinear functions between the inputs … of neurons, activation functions and their parameters subject … of call sequence, we apply the DNN to each sequence and …

参考文章(39)
Abdurrahman Pektaş, Tankut Acarman, A dynamic malware analyzer against virtual machine aware malicious software Security and Communication Networks. ,vol. 7, pp. 2245- 2257 ,(2014) , 10.1002/SEC.931
Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, Terran Lane, Graph-based malware detection using dynamic analysis Journal of Computer Virology and Hacking Techniques. ,vol. 7, pp. 247- 258 ,(2011) , 10.1007/S11416-011-0152-X
Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, Li Fei-Fei, Large-Scale Video Classification with Convolutional Neural Networks computer vision and pattern recognition. pp. 1725- 1732 ,(2014) , 10.1109/CVPR.2014.223
Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, Abdullah Gani, Evaluation of machine learning classifiers for mobile malware detection soft computing. ,vol. 20, pp. 343- 357 ,(2016) , 10.1007/S00500-014-1511-6
Ilya Sutskever, Geoffrey Hinton, Alex Krizhevsky, Ruslan Salakhutdinov, Nitish Srivastava, Dropout: a simple way to prevent neural networks from overfitting Journal of Machine Learning Research. ,vol. 15, pp. 1929- 1958 ,(2014)
Yiming Yang, An Evaluation of Statistical Approaches to Text Categorization Information Retrieval. ,vol. 1, pp. 69- 90 ,(1999) , 10.1023/A:1009982220290
Zhenlong Yuan, Yongqiang Lu, Yibo Xue, DroidDetector: Android Malware Characterization and Detection Using Deep Learning Tsinghua Science & Technology. ,vol. 21, pp. 114- 123 ,(2016) , 10.1109/TST.2016.7399288
Marko Dimjašević, Simone Atzeni, Ivo Ugrina, Zvonimir Rakamaric, Evaluation of Android Malware Detection Based on System Calls international workshop on security. pp. 1- 8 ,(2016) , 10.1145/2875475.2875487
Andrea Saracino, Daniele Sgandurra, Gianluca Dini, Fabio Martinelli, MADAM: Effective and Efficient Behavior-based Android Malware Detection and Prevention IEEE Transactions on Dependable and Secure Computing. ,vol. 15, pp. 83- 97 ,(2018) , 10.1109/TDSC.2016.2536605