Observation of ice-like water layers at an aqueous protein surface

作者: Konrad Meister , Simona Strazdaite , Arthur L. DeVries , Stephan Lotze , Luuk L. C. Olijve

DOI: 10.1073/PNAS.1414188111

关键词: Sum frequency generation spectroscopyAqueous solutionFreezing pointAntifreeze proteinProperties of waterChemical engineeringCrystallographyCrystallizationSurface proteinFemtosecondChemistry

摘要: We study the properties of water at surface an antifreeze protein with femtosecond sum frequency generation spectroscopy. find clear evidence for presence ice-like layers ice-binding site in aqueous solution temperatures above freezing point. Decreasing temperature to biological working (0 °C −2 °C) increases amount water, while a single point mutation is observed completely disrupt character and eliminate activity. Our observations indicate that not itself but ordered are responsible recognition binding ice.

参考文章(40)
Cheng Yang, Kim A. Sharp, The mechanism of the type III antifreeze protein action: a computational study Biophysical Chemistry. ,vol. 109, pp. 137- 148 ,(2004) , 10.1016/J.BPC.2003.10.024
Kathrin Engelhardt, Wolfgang Peukert, Björn Braunschweig, Vibrational sum-frequency generation at protein modified air–water interfaces: Effects of molecular structure and surface charging Current Opinion in Colloid & Interface Science. ,vol. 19, pp. 207- 215 ,(2014) , 10.1016/J.COCIS.2014.03.008
J. A. Raymond, A. L. DeVries, Adsorption inhibition as a mechanism of freezing resistance in polar fishes Proceedings of the National Academy of Sciences of the United States of America. ,vol. 74, pp. 2589- 2593 ,(1977) , 10.1073/PNAS.74.6.2589
David R. Nutt, Jeremy C. Smith, Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. Journal of the American Chemical Society. ,vol. 130, pp. 13066- 13073 ,(2008) , 10.1021/JA8034027
F. William Studier, Protein production by auto-induction in high-density shaking cultures Protein Expression and Purification. ,vol. 41, pp. 207- 234 ,(2005) , 10.1016/J.PEP.2005.01.016
C. P. Garnham, R. L. Campbell, P. L. Davies, Anchored clathrate waters bind antifreeze proteins to ice. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 108, pp. 7363- 7367 ,(2011) , 10.1073/PNAS.1100429108
K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner, M. Havenith, Long-range protein-water dynamics in hyperactive insect antifreeze proteins. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 110, pp. 1617- 1622 ,(2013) , 10.1073/PNAS.1214911110
D. Zhong, S. K. Pal, D. Zhang, S. I. Chan, A. H. Zewail, Femtosecond dynamics of rubredoxin: Tryptophan solvation and resonance energy transfer in the protein Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 13- 18 ,(2002) , 10.1073/PNAS.012582399
Song-Ho Chong, Sihyun Ham, Interaction with the Surrounding Water Plays a Key Role in Determining the Aggregation Propensity of Proteins Angewandte Chemie International Edition. ,vol. 53, pp. 3961- 3964 ,(2014) , 10.1002/ANIE.201309317