AHSCAN: Agglomerative Hierarchical Structural Clustering Algorithm for Networks

作者: Nurcan Yuruk , Mutlu Mete , Xiaowei Xu , Thomas A.J. Schweiger

DOI: 10.1109/ASONAM.2009.74

关键词: Social networkAlgorithm designHierarchical network modelThe InternetHierarchical clustering of networksCluster analysisBrown clusteringHierarchical clusteringData miningComputer science

摘要: Many systems in sciences, engineering and nature can be modeled as networks. Examples include the internet, WWW social Finding hidden structures is important for making sense of complex networked data. In this paper we present a new network clustering method that find clusters an agglomerative fashion using structural similarity vertices given network. Experiments conducted on real datasets demonstrate promising performance method.

参考文章(7)
M. Girvan, M. E. J. Newman, Community structure in social and biological networks Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 7821- 7826 ,(2002) , 10.1073/PNAS.122653799
Roger Guimerà, Luís A. Nunes Amaral, Functional cartography of complex metabolic networks Nature. ,vol. 433, pp. 895- 900 ,(2005) , 10.1038/NATURE03288
Aaron Clauset, M. E. J. Newman, Cristopher Moore, Finding community structure in very large networks. Physical Review E. ,vol. 70, pp. 066111- ,(2004) , 10.1103/PHYSREVE.70.066111
M. E. J. Newman, M. Girvan, Finding and evaluating community structure in networks. Physical Review E. ,vol. 69, pp. 026113- 026113 ,(2004) , 10.1103/PHYSREVE.69.026113
Jianbo Shi, J. Malik, Normalized cuts and image segmentation IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 22, pp. 888- 905 ,(2000) , 10.1109/34.868688
Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, Thomas A. J. Schweiger, SCAN Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '07. pp. 824- 833 ,(2007) , 10.1145/1281192.1281280
C.H.Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, H.D. Simon, A min-max cut algorithm for graph partitioning and data clustering international conference on data mining. pp. 107- 114 ,(2001) , 10.1109/ICDM.2001.989507