Inferring statistical complexity.

作者: James P. Crutchfield , Karl Young

DOI: 10.1103/PHYSREVLETT.63.105

关键词: AlgorithmComputer scienceEquations of motionComplex systemEntropy (statistical thermodynamics)Statistical physicsData streamInformation processingQuantum complexity theoryCascadeStatistical mechanics

摘要: Statistical mechanics is used to describe the observed information processing complexity of nonlinear dynamical systems. We introduce a measure of complexity distinct from and dual …

参考文章(8)
Gregory J. Chaitin, On the Length of Programs for Computing Finite Binary Sequences Journal of the ACM. ,vol. 13, pp. 547- 569 ,(1966) , 10.1145/321356.321363
J. P. Crutchfield, N. H. Packard, Symbolic Dynamics of One-Dimensional Maps: Entropies, Finite Precision, and Noise International Journal of Theoretical Physics. ,vol. 21, pp. 433- 466 ,(1982) , 10.1007/BF02650178
Roland Fischer, Sofic systems and graphs Monatshefte für Mathematik. ,vol. 80, pp. 179- 186 ,(1975) , 10.1007/BF01319913
N. Chomsky, Three models for the description of language IEEE Transactions on Information Theory. ,vol. 2, pp. 113- 124 ,(1956) , 10.1109/TIT.1956.1056813
Peter Grassberger, Toward a Quantitative Theory of Self-Generated Complexity International Journal of Theoretical Physics. ,vol. 25, pp. 907- 938 ,(1986) , 10.1007/BF00668821
Stephen Wolfram, Computation theory of cellular automata Communications in Mathematical Physics. ,vol. 96, pp. 15- 57 ,(1984) , 10.1007/BF01217347
Constantin P. Bachas, B. A. Huberman, Complexity and the relaxation of hierarchical structures. Physical Review Letters. ,vol. 57, pp. 1965- 1969 ,(1986) , 10.1103/PHYSREVLETT.57.1965
Seth Lloyd, Heinz Pagels, Complexity as thermodynamic depth Annals of Physics. ,vol. 188, pp. 186- 213 ,(1988) , 10.1016/0003-4916(88)90094-2