Quantum Chaos in Billiards

作者: Arnd Backer

DOI: 10.1109/MCSE.2007.61

关键词: Dynamical systems theoryPython (programming language)EigenfunctionStatistical physicsPure mathematicsQuantum computerMechanical systemQuantumMathematicsQuantum chaosEigenvalues and eigenvectors

摘要: An important class of systems - billiards can show a wide variety dynamical behavior. Using tools developed in Python, researchers interactively study the complexity these dynamics. Such behavior is directly reflected properties corresponding quantum systems, such as eigenvalue statistics or structure eigenfunctions

参考文章(10)
André Voros, Semi-classical ergodicity of quantum eigenstates in the Wigner representation Stochastic Behavior in Classical and Quantum Hamiltonian Systems. ,vol. 93, pp. 326- 333 ,(1979) , 10.1007/BFB0021756
M Robnik, Classical dynamics of a family of billiards with analytic boundaries Journal of Physics A. ,vol. 16, pp. 3971- 3986 ,(1983) , 10.1088/0305-4470/16/17/014
Arnd Bäcker, Roland Ketzmerick, Alejandro G. Monastra, Flooding of chaotic eigenstates into regular phase space islands. Physical Review Letters. ,vol. 94, pp. 054102- ,(2005) , 10.1103/PHYSREVLETT.94.054102
Arnd Bäcker, Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems The Mathematical Aspects of Quantum Maps. ,vol. 618, pp. 91- 144 ,(2003) , 10.1007/3-540-37045-5_4
M V Berry, Regular and irregular semiclassical wavefunctions Journal of Physics A. ,vol. 10, pp. 2083- 2091 ,(1977) , 10.1088/0305-4470/10/12/016
A. Bäcker, R. Schubert, P. Stifter, RATE OF QUANTUM ERGODICITY IN EUCLIDEAN BILLIARDS Physical Review E. ,vol. 57, pp. 5425- 5447 ,(1998) , 10.1103/PHYSREVE.57.5425
A Bäcker, H R Dullin, Symbolic dynamics and periodic orbits for the cardioid billiard Journal of Physics A. ,vol. 30, pp. 1991- 2020 ,(1997) , 10.1088/0305-4470/30/6/023
O. Bohigas, M. J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws Physical Review Letters. ,vol. 52, pp. 1- 4 ,(1984) , 10.1103/PHYSREVLETT.52.1
R. Aurich, F. Steiner, Statistical properties of highly excited quantum eigenstates of a strongly chaotic system Physica D: Nonlinear Phenomena. ,vol. 64, pp. 185- 214 ,(1993) , 10.1016/0167-2789(93)90255-Y
Level Clustering in the Regular Spectrum Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 356, pp. 375- 394 ,(1977) , 10.1098/RSPA.1977.0140