High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R=La,Pr,…,Yb)

作者: Yang Wang , Yu Sui , Wenhui Su

DOI: 10.1063/1.3003065

关键词: Materials scienceDopingPolaronManganiteThermoelectric effectInorganic chemistryAnalytical chemistryElectrical resistivity and conductivityOxideIonSeebeck coefficient

摘要: Electron-doped perovskite manganite Ca0.9R0.1MnO3 (R=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) polycrystalline samples were prepared and their transport thermoelectric properties studied from room temperature to 1000 K. The behavior for all the is adiabatic small polaron hopping mechanism below 600 K but changes metallic conductivity at higher temperature. Above K, more 3d electrons of Mn3+ ions will occupy eg orbitals, resulting in variation power values. For samples, only determined by carrier concentration, resistivity also rests with effective bandwidth. size matching between Ca2+ R3+ together heavier doping can improve performance evidently. Combining these two factors, Ca0.9Dy0.1MnO3 Ca0.9Yb0.1MnO3 reach ZT=0.2 suggesting that they be efficient high n-type oxide materials.

参考文章(36)
G. Jakob, W. Westerburg, F. Martin, H. Adrian, Small-polaron transport in La 0.67 Ca 0.33 MnO 3 thin films Physical Review B. ,vol. 58, pp. 14966- 14970 ,(1998) , 10.1103/PHYSREVB.58.14966
Terry M. Tritt, Recent Trends in Thermoelectric Materials Research Academic Press. ,(2000)
Gaojie Xu, Ryoji Funahashi, Masahiro Shikano, Ichiro Matsubara, Yuqin Zhou, Thermoelectric properties of the Bi- and Na-substituted Ca3Co4O9 system Applied Physics Letters. ,vol. 80, pp. 3760- 3762 ,(2002) , 10.1063/1.1480115
Brian C. Sales, David G. Mandrus, Bryan C. Chakoumakos, Chapter 1 Use of atomic displacement parameters in thermoelectric materials research Semiconductors and Semimetals. ,vol. 70, pp. 1- 36 ,(2001) , 10.1016/S0080-8784(01)80135-6
R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, M. Mikami, Ca2.7Bi0.3Co4O9∕La0.9Bi0.1NiO3 thermoelectric deviceswith high output power density Applied Physics Letters. ,vol. 85, pp. 1036- 1038 ,(2004) , 10.1063/1.1780593
J. Androulakis, Pantelis Migiakis, J. Giapintzakis, La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide Applied Physics Letters. ,vol. 84, pp. 1099- 1101 ,(2004) , 10.1063/1.1647686
D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, K. Koumoto, Thermoelectrical properties of A-site substituted Ca1- xRexMnO3 system Journal of Applied Physics. ,vol. 100, pp. 084911- 084911 ,(2006) , 10.1063/1.2362922
D. B. Marsh, P. E. Parris, High-temperature thermopower of LaMnO3 and related systems. Physical Review B. ,vol. 54, pp. 16602- 16607 ,(1996) , 10.1103/PHYSREVB.54.16602
Glen A. Slack, Moayyed A. Hussain, The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators Journal of Applied Physics. ,vol. 70, pp. 2694- 2718 ,(1991) , 10.1063/1.349385
E Sudhakar Reddy, J G Noudem, S Hebert, C Goupil, Fabrication and properties of four-leg oxide thermoelectric modules Journal of Physics D. ,vol. 38, pp. 3751- 3755 ,(2005) , 10.1088/0022-3727/38/19/026