Thermal modeling of a solid oxide fuel cell and micro gas turbine hybrid power system based on modified LS-SVM

作者: Xiao-Juan Wu , Qi Huang , Xin-Jian Zhu

DOI: 10.1016/J.IJHYDENE.2010.08.022

关键词: Particle swarm optimizationHybrid systemHybrid powerMaterials scienceAutomotive engineeringTurbineSolid oxide fuel cellLeast squares support vector machineOperating temperatureNonlinear system

摘要: Abstract For a solid oxide fuel cell (SOFC) integrated into micro gas turbine (MGT) hybrid power system, SOFC operating temperature and inlet are the key parameters, which affect performance of system. Thus, least squares support vector machine (LS-SVM) identification model based on an improved particle swarm optimization (PSO) algorithm is proposed to describe nonlinear dynamic properties SOFC/MGT system in this paper. During process modeling, PSO employed optimize parameters LS-SVM. In order obtain training prediction data identify modified LS-SVM model, physical established via Simulink toolbox MATLAB6.5. Compared conventional BP neural network standard LS-SVM, simulation results show that can efficiently reflect response

参考文章(23)
J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers Neural Processing Letters. ,vol. 9, pp. 293- 300 ,(1999) , 10.1023/A:1018628609742
Xiao-Juan Wu, Xin-Jian Zhu, Guang-Yi Cao, Heng-Yong Tu, Modeling a SOFC stack based on GA-RBF neural networks identification Journal of Power Sources. ,vol. 167, pp. 145- 150 ,(2007) , 10.1016/J.JPOWSOUR.2007.01.086
Fabian Mueller, Robert Gaynor, Allie E. Auld, Jacob Brouwer, Faryar Jabbari, G. Scott Samuelsen, Synergistic integration of a gas turbine and solid oxide fuel cell for improved transient capability Journal of Power Sources. ,vol. 176, pp. 229- 239 ,(2008) , 10.1016/J.JPOWSOUR.2007.10.081
Ying-Wei Kang, Jun Li, Guang-Yi Cao, Heng-Yong Tu, Jian Li, Jie Yang, Dynamic temperature modeling of an SOFC using least squares support vector machines Journal of Power Sources. ,vol. 179, pp. 683- 692 ,(2008) , 10.1016/J.JPOWSOUR.2008.01.022
Xiao-juan Wu, Xin-jian Zhu, Guang-yi Cao, Heng-yong Tu, Dynamic modeling of SOFC based on a T–S fuzzy model Simulation Modelling Practice and Theory. ,vol. 16, pp. 494- 504 ,(2008) , 10.1016/J.SIMPAT.2008.02.004
A.C Burt, I.B Celik, R.S Gemmen, A.V Smirnov, A numerical study of cell-to-cell variations in a SOFC stack Journal of Power Sources. ,vol. 126, pp. 76- 87 ,(2004) , 10.1016/J.JPOWSOUR.2003.08.034
S. Campanari, P. Iora, Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry Journal of Power Sources. ,vol. 132, pp. 113- 126 ,(2004) , 10.1016/J.JPOWSOUR.2004.01.043
Xiang-jun Wen, Yu-nong Zhang, Wei-wu Yan, Xiao-ming Xu, Nonlinear decoupling controller design based on least squares support vector regression Journal of Zhejiang University Science. ,vol. 7, pp. 275- 284 ,(2006) , 10.1631/JZUS.2006.A0275
Nobuhiro Iwasaki, Keiichiro Yasuda, Genki Ueno, Dynamic parameter tuning of particle swarm optimization Ieej Transactions on Electrical and Electronic Engineering. ,vol. 1, pp. 353- 363 ,(2006) , 10.1002/TEE.20078
S.K. Park, K.S. Oh, T.S. Kim, Analysis of the design of a pressurized SOFC hybrid system using a fixed gas turbine design Journal of Power Sources. ,vol. 170, pp. 130- 139 ,(2007) , 10.1016/J.JPOWSOUR.2007.03.067