The SB-ST decomposition in the study of Developmental Coordination Disorder

作者: Leonardo Claudino , Jane E. Clark , Yiannis Aloimonos

DOI: 10.1109/DEVLRN.2015.7346131

关键词: Degrees of freedomComputer scienceParametric modelComputational modelBasis (linear algebra)Matrix decompositionBiological motion perceptionPattern recognitionMotion captureArtificial intelligenceRedundancy (engineering)

摘要: To deal with redundancy and high-dimensionality that are typical of movement data, we propose to decompose action matrices in two decoupled steps: first, discover a set key postures, is, vectors corresponding relationships among degrees freedom (like angles between body parts) which call spatial basis (SB) second, impose parametric model the spatio-temporal (ST) profiles each SB vector. These steps constitute SB-ST decomposition an action: represent their ST trajectories these postures parameters express how being controlled coordinated. shares elements common computational models motor synergies biological motion perception, it relates human manifold popular machine learning. We showcase method by applying study vertical jumps adults, typically developing children Developmental Coordination Disorder obtained capture. Using also evaluate alone against other techniques terms reconstruction ability number dimensions used.

参考文章(24)
Mark Latash, Mindy Levin, John Scholz, Gregor Schöner, Motor control theories and their applications Medicina. ,vol. 46, pp. 382- 392 ,(2010) , 10.3390/MEDICINA46060054
Neil D. Lawrence, Learning for Larger Datasets with the Gaussian Process Latent Variable Model international conference on artificial intelligence and statistics. pp. 243- 250 ,(2007)
Andrea d'Avella, Philippe Saltiel, Emilio Bizzi, Combinations of muscle synergies in the construction of a natural motor behavior Nature Neuroscience. ,vol. 6, pp. 300- 308 ,(2003) , 10.1038/NN1010
G. H. Golub, V. Pereyra, The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate. SIAM Journal on Numerical Analysis. ,vol. 10, pp. 413- 432 ,(1972) , 10.1137/0710036
Jody L. Jensen, Sally J. Phillips, Jane E. Clark, For young jumpers, differences are in the movement's control, not its coordination. Research Quarterly for Exercise and Sport. ,vol. 65, pp. 258- 268 ,(1994) , 10.1080/02701367.1994.10607627
Yuri P. Ivanenko, Richard E. Poppele, Francesco Lacquaniti, Motor Control Programs and Walking The Neuroscientist. ,vol. 12, pp. 339- 348 ,(2006) , 10.1177/1073858406287987
F.A. Mussa–Ivaldi, E. Bizzi, Motor learning through the combination of primitives. Philosophical Transactions of the Royal Society B. ,vol. 355, pp. 1755- 1769 ,(2000) , 10.1098/RSTB.2000.0733
Yuri P Ivanenko, Germana Cappellini, Nadia Dominici, Richard E Poppele, Francesco Lacquaniti, Coordination of locomotion with voluntary movements in humans. The Journal of Neuroscience. ,vol. 25, pp. 7238- 7253 ,(2005) , 10.1523/JNEUROSCI.1327-05.2005
Dianne P. O’Leary, Bert W. Rust, Variable projection for nonlinear least squares problems Computational Optimization and Applications. ,vol. 54, pp. 579- 593 ,(2013) , 10.1007/S10589-012-9492-9
Matthew C. Tresch, Vincent C. K. Cheung, Andrea d'Avella, Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. Journal of Neurophysiology. ,vol. 95, pp. 2199- 2212 ,(2006) , 10.1152/JN.00222.2005