On the 3-wave Equations with Constant Boundary Conditions

作者: Georgi G. Grahovski , Vladimir S. Gerdjikov

DOI:

关键词: Riemann surfaceInverse scattering transformMathematicsBoundary value problemConstant (mathematics)Inverse scattering problemLax pairMathematical analysisWave equationOperator (physics)

摘要: The inverse scattering transform for a special case of the 3-wave resonant interaction equations with non-vanishing boundary conditions is studied. Jost solutions and fundamental analytic (FAS) associated spectral problem are constructed. Lax operator formulated as Riemann-Hilbert on Riemann surface. properties formulated.

参考文章(34)
D. J. Kaup, The Three-Wave Interaction-A Nondispersive Phenomenon Studies in Applied Mathematics. ,vol. 55, pp. 9- 44 ,(1976) , 10.1002/SAPM19765519
Nikolaj Petrovič Vekus, Systems of singular integral equations ,(1967)
Angela Slavova, Peter R. Popivanov, Nonlinear Waves: An Introduction ,(2010)
Gaetano Vilasi, A. B. Yanovski, V. S. Gerdjikov, Integrable Hamiltonian Hierarchies: Spectral and Geometric Methods ,(2008)
Francesco Calogero, Spectral Transform and Solitons ,(2012)
Barbara Prinari, Gino Biondini, A. David Trubatch, Inverse Scattering Transform for the Multi-Component Nonlinear Schrödinger Equation with Nonzero Boundary Conditions Studies in Applied Mathematics. ,vol. 126, pp. 245- 302 ,(2011) , 10.1111/J.1467-9590.2010.00504.X
S Novikov, Sergei V Manakov, Lev Petrovich Pitaevskii, Vladimir Evgenevič Zakharov, Theory of Solitons: The Inverse Scattering Method ,(1984)
Mark J. Ablowitz, David J. Kaup, Alan C. Newell, Harvey Segur, The Inverse scattering transform fourier analysis for nonlinear problems Studies in Applied Mathematics. ,vol. 53, pp. 249- 315 ,(1974) , 10.1002/SAPM1974534249
Antonio Degasperis, Sara Lombardo, Exact solutions of the 3-wave resonant interaction equation Physica D: Nonlinear Phenomena. ,vol. 214, pp. 157- 168 ,(2006) , 10.1016/J.PHYSD.2006.01.003
V E Vekslerchik, V V Konotop, Discrete nonlinear Schrodinger equation under nonvanishing boundary conditions Inverse Problems. ,vol. 8, pp. 889- 909 ,(1992) , 10.1088/0266-5611/8/6/007