作者: Cheryl F. Lichti , Norelle C. Wildburger , Alexander S. Shavkunov , Ekaterina Mostovenko , Huiling Liu
DOI: 10.1016/J.EUPROT.2015.06.008
关键词: Quantitative proteomics 、 Bioinformatics analysis 、 Arginine 、 Biology 、 Glioma 、 Hierarchical clustering 、 Computational biology 、 Serine 、 SPLICING FACTOR 2 、 Cell culture 、 Molecular biology
摘要: Abstract Glioma stem-like cells (GSCs) are hypothesized to provide a repository of in tumors that can self-replicate and radio- chemo-resistant. GSC lines, representing several glioma subtypes, have been isolated characterized at the transcript level. We sought characterize 35 lines protein level using label-free quantitative proteomics. Resulting relative fold changes were used drive unsupervised hierarchical clustering for purpose classifying cell based on proteomic profiles. Bioinformatics analysis identified synoviolin, serine/arginine-rich splicing factor 2, symplekin, IL-5 as molecules interest progression and/or treatment glioma.