Design and analysis of ADER-type schemes for model advection–diffusion–reaction equations

作者: S. Busto , E.F. Toro , M.E. Vázquez-Cendón

DOI: 10.1016/J.JCP.2016.09.043

关键词: AdvectionOrder of accuracyLinear stabilityType (model theory)Mathematical optimizationFinite volume methodDifferential equationMathematicsSpacetimeRate of convergence

摘要: Abstract We construct, analyze and assess various schemes of second order accuracy in space time for model advection–diffusion–reaction differential equations. The constructed are meant to be practical use solving industrial problems derived following two related approaches, namely ADER MUSCL-Hancock. Detailed analysis linear stability local truncation error carried out. In addition, the implemented assessed test problems. Empirical convergence rate studies confirm theoretically expected both time.

参考文章(49)
M. Dumbser, V.A. Titarev, E.F. Toro, M. Käser, The Derivative Riemann Problem: The basis for high order ADER Schemes ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006. ,(2006)
E. F. Toro, R. C. Millington, L. A. M. Nejad, Towards Very High Order Godunov Schemes Springer, Boston, MA. pp. 907- 940 ,(2001) , 10.1007/978-1-4615-0663-8_87
J. A. Hernández, High‐order finite volume schemes for the advection–diffusion equation International Journal for Numerical Methods in Engineering. ,vol. 53, pp. 1211- 1234 ,(2002) , 10.1002/NME.335
Steve T. Chiang, Klaus A. Hoffmann, Computational Fluid Dynamics for Engineers ,(1989)
Pierre-Arnaud Raviart, Edwige Godlewski, Numerical Approximation of Hyperbolic Systems of Conservation Laws ,(1996)
J. Murillo, P. García-Navarro, Improved Riemann solvers for complex transport in two-dimensional unsteady shallow flow Journal of Computational Physics. ,vol. 230, pp. 7202- 7239 ,(2011) , 10.1016/J.JCP.2011.05.022