Motion of Vortices in Type II Superconductors

作者: S. Jonathan Chapman , G. Richardson

DOI: 10.1137/S0036139994263872

关键词: Type-II superconductorEquations of motionInviscid flowCurvilinear coordinatesVortexSuperconductivityGinzburg–Landau theoryPhysicsPartial differential equationClassical mechanicsApplied mathematics

摘要: The methods of formal asymptotics are used to examine the behaviour a system curvilinear vortices in type II superconductor as thickness vortex cores tends zero. then appear singularities field equation and analagous line inviscid hydrodynamics. A local analysis near each core gives an motion governing evolution these singularities.

参考文章(7)
L. P. Gor'kov, N. B. Kopnin, Viscous Vortex Flow in Superconductors with Paramagnetic Impurities Journal of Experimental and Theoretical Physics. ,vol. 33, pp. 1251- ,(1971)
L. P. GOR'KOV, G. M. éLIASHBERG, Generalization of the Ginzburg-Landau Equations for Non-stationary Problems in the Case of Alloys with Paramagnetic Impurities Journal of Experimental and Theoretical Physics. ,vol. 27, pp. 328- ,(1968) , 10.1142/9789814317344_0003
Qiang Du, Max D. Gunzburger, Janet S. Peterson, Analysis and Approximation of the Ginzburg–Landau Model of Superconductivity SIAM Review. ,vol. 34, pp. 54- 81 ,(1992) , 10.1137/1034003
L. Peres, J. Rubinstein, Vortex dynamics in U(1) Ginzberg-Landau models Physica D: Nonlinear Phenomena. ,vol. 64, pp. 299- 309 ,(1993) , 10.1016/0167-2789(93)90261-X
George Keith Batchelor, An Introduction to Fluid Dynamics ,(1967)
L.D. Landau, V.L. Ginzburg, On the Theory of superconductivity Zh.Eksp.Teor.Fiz.. ,vol. 20, pp. 1064- 1082 ,(1950)