作者: M. W. Anderson , T. M. O’Neil
DOI: 10.1063/1.2807220
关键词: Dispersion relation 、 Electromagnetic electron wave 、 Plasma oscillation 、 Wavenumber 、 Plasma 、 Physics 、 Atomic physics 、 Landau damping 、 Debye length 、 Collision frequency
摘要: The collisional damping of electron plasma waves (or Trivelpiece–Gould waves) on a pure column is discussed. in differs from that neutral plasma, since there are no ions to provide drag. A dispersion relation for the complex wave frequency derived Poisson’s equation and drift-kinetic with Dougherty collision operator—a Fokker–Planck operator conserves particle number, momentum, energy. For large phase velocity, where Landau negligible, yields ω=(kzωp∕k)[1+(3∕2)(kλD)2(1+10iα∕9)(1+2iα)−1], ωp frequency, kz axial wavenumber, k total λD Debye length, ν α≡νk∕ωpkz. This expression spans weakly regime (α⪡1) moderately (α∼1) limit rate which smaller than plasm...