Cohomology of twisted tensor products

作者: Petter Andreas Bergh , Steffen Oppermann

DOI: 10.1016/J.JALGEBRA.2008.08.005

关键词: AlgebraTensor product of Hilbert spacesMathematicsTensor product of modulesEquivariant cohomologyCup productTensor product of algebrasTensor (intrinsic definition)Cohomology ringTensor density

摘要: Abstract It is well known that the cohomology of a tensor product essentially cohomologies. We look at twisted products, and investigate to which extent this still true. give an explicit description Ext-algebra two modules, under certain additional conditions, describe essential part Hochschild ring product. As application, we characterize precisely when groups over quantum complete intersection are finitely generated ring. Moreover, both for intersections in related cases obtain lower bound representation dimension algebra.

参考文章(15)
David J. Benson, Karin Erdmann, Miles Holloway, Rank varieties for a class of finite-dimensional local algebras Journal of Pure and Applied Algebra. ,vol. 211, pp. 497- 510 ,(2007) , 10.1016/J.JPAA.2007.02.006
L. L. Avramov, Modules of finite virtual projective dimension Inventiones Mathematicae. ,vol. 96, pp. 71- 101 ,(1989) , 10.1007/BF01393971
Petter Andreas Bergh, Representation dimension and finitely generated cohomology Advances in Mathematics. ,vol. 219, pp. 389- 400 ,(2008) , 10.1016/J.AIM.2008.05.007
Petter Andreas Bergh, Steffen Oppermann, The representation dimension of quantum complete intersections Journal of Algebra. ,vol. 320, pp. 354- 368 ,(2008) , 10.1016/J.JALGEBRA.2008.04.009
Nobuo Yoneda, NOTE ON PRODUCTS IN Ext Proceedings of the American Mathematical Society. ,vol. 9, pp. 873- ,(1958) , 10.2307/2033320
Petter Bergh, Karin Erdmann, Homology and cohomology of quantum complete intersections Algebra & Number Theory. ,vol. 2, pp. 501- 522 ,(2008) , 10.2140/ANT.2008.2.501
Leonard Evens, The cohomology ring of a finite group Transactions of the American Mathematical Society. ,vol. 101, pp. 224- 239 ,(1961) , 10.1090/S0002-9947-1961-0137742-1
Changchang Xi, On the Representation Dimension of Finite Dimensional Algebras Journal of Algebra. ,vol. 226, pp. 332- 346 ,(2000) , 10.1006/JABR.1999.8177
Thorsten Holm, Wei Hu, The representation dimension of k[x,y]/(x2,yn) Journal of Algebra. ,vol. 301, pp. 791- 802 ,(2006) , 10.1016/J.JALGEBRA.2005.11.037
Raphaël Rouquier, Dimensions of triangulated categories Journal of K-theory. ,vol. 1, pp. 193- 256 ,(2008) , 10.1017/IS007011012JKT010