Predicting Km values of beta-glucosidases using cellobiose as substrate.

作者: Shao-Min Yan , De-Qiang Shi , Hao Nong , Guang Wu

DOI: 10.1007/S12539-012-0115-Z

关键词: Substrate (chemistry)Biological systemCellulose metabolismChemistryEconomic shortageCellulose hydrolysisStereochemistryEnzyme catalysisFeedforward backpropagation neural networkBeta-glucosidaseCellobiose

摘要: The Michaelis-Menten constant Km is a very important parameter to relate enzyme with its substrate in enzymatic reaction. Although can be experimentally determined, the values are not easily available literature. With rapid increase of newly designed enzymes, we face shortage parameters related reactions. beta-glucosidase crucial for cellulose hydrolysis and cellobiose one substrates. In this study, attempt develop models predict as substrates using information about primary structure beta-glucosidase. results show that 20-1 feedforward backpropagation neural network amino-acid distribution probability predictor works best prediction values.

参考文章(22)
G. Trinquier, Y. H. Sanejouand, Which effective property of amino acids is best preserved by the genetic code Protein Engineering. ,vol. 11, pp. 153- 169 ,(1998) , 10.1093/PROTEIN/11.3.153
Yudong Cai, Jianfeng He, Xinlei Li, Kaiyan Feng, Lin Lu, Kairui Feng, Xiangyin Kong, Wencong Lu, Prediction of Protein Subcellular Locations with Feature Selection and Analysis Protein and Peptide Letters. ,vol. 17, pp. 464- 472 ,(2010) , 10.2174/092986610790963654
Wu Guang, Creation and Application of Computational Mutation Journal of Guangxi Academy of Sciences. ,(2010)
N Redaschi, BE Suzek, S Duvaud, S Gehant, P Langendijk-Genevaux, C Sigrist, J Bolleman, I Xenarios, A Morgat, R Apweiler, CR Vinayaka, D Lieberherr, S Paesano, M Pruess, I Cusin, N Gruaz-Gumowski, D Binns, R Huntley, E Boutet, A Auchincloss, D Poggioli, S Poux, B Roechert, A Bridge, N Hulo, F Jungo, R Foulger, R Leinonen, I Pedruzzi, B Boeckmann, Y Alam-Faruque, J Jacobsen, U Hinz, J Nchoutmboube, L Famiglietti, A Bairoch, P McGarvey, C Lachaize, C Rivoire, D Baratin, S Orchard, K Laiho, R Eberhardt, L Arminski, M Magrane, C Hulo, A Gos, E Coudert, S Ferro, DA Natale, C O'Donovan, W Barker, G Keller, H Huang, Y Chen, E Stanley, C Chen, C Wu, MJ Martin, A Stutz, N Petrova, M Schneider, D Barrell, M Corbett, R Mazumder, S Vasudevan, Q Lin, M Moinat, M Tognolli, S Sundaram, J Garavelli, D Dornevil, M Pozzato, L Verbregue, P Lemercier, D Legge, X Martin, E Gasteiger, P Browne, J Zhang, K Axelsen, L Bower, S Jimenez, S Staehli, A Estreicher, M Doche, T Kappler, A Fedotov, U Ugochukwu, M Kleen, L Bollondi, R Antunes, J James, M Donnelly, S Patient, G Argoud-Puy, W Liu, S Pilbout, M Bingley, C Arighi, J Luo, K Sonesson, E deCastro, A-L Veuthey, M-C Blatter, Gerritsen, P van Rensburg, Lara, L Bougueleret, P Masson, PD Roggli, S Altairac, L Zuletta, SB Quintaje, Z-Z Hu, L Ciapina, Pillet, G di Martino, L Lane-Guermonprez, G Delbard, N Farriol-Mathis, Tdo Lima, D Coral, N Subramanian, L Yip, Mangold, B Bely, L Breuza, LS Yeh, WM Chan, E Dimmer, A Gateau, M Feuermann, A Mottaz, The Universal Protein Resource (UniProt) in 2010 NUCLEIC ACIDS RESEARCH , 38 D142-D148. (2010). ,(2010)
Yan Shaomin, Guang Wu, Lecture Notes on Computational Mutation ,(2008)
Geoffrey M. Cooper, The Cell: A Molecular Approach ,(1996)