PIK3CA somatic mutations in breast cancer: Mechanistic insights from Langevin dynamics simulations

作者: Parminder K. Mankoo , Saraswati Sukumar , Rachel Karchin

DOI: 10.1002/PROT.22265

关键词: MutantWild typeSomatic cellKinaseHomology modelingMolecular biologyGene isoformOncogenicityProtein subunitBiology

摘要: Somatic mutations in PIK3CA (phosphati-dylinositol-3 kinase, catalytic subunit, alpha isoform) are reported breast and other human cancers to concentrate at hotspots within its kinase helical domains. Most of these cause gain function vitro associated with oncogenicity vivo. However, little is known about the mechanisms driving tumor development. We have performed computational structural studies on a homology model wildtype plus recurrent H1047R, H1047L, P539R mutations, located domains, respectively. The time evolution structures show that H1047R/L mutants exhibit larger area cleft between N- C-lobes compared could facilitate entrance substrates. This might yield enhanced substrate-to-product turnover oncogenicity. In addition, display increased activation loop mobility, wildtype. mutant forms more hydrogen bonds salt-bridge interactions than wildtype, properties thermostability. Mutant-specific differences behavior suggest structure-based mutant-specific inhibitors can be designed for PIK3CA-positive cancers.

参考文章(62)
Luciano Pirola, Marketa J. Zvelebil, Genevieve Bulgarelli-Leva, Emmanuel Van Obberghen, Michael D. Waterfield, Matthias P. Wymann, Activation Loop Sequences Confer Substrate Specificity to Phosphoinositide 3-Kinase α (PI3Kα) FUNCTIONS OF LIPID KINASE-DEFICIENT PI3Kα IN SIGNALING Journal of Biological Chemistry. ,vol. 276, pp. 21544- 21554 ,(2001) , 10.1074/JBC.M011330200
C.J. Vlahos, W.F. Matter, K.Y. Hui, R.F. Brown, A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). Journal of Biological Chemistry. ,vol. 269, pp. 5241- 5248 ,(1994) , 10.1016/S0021-9258(17)37680-9
Guojun Wu, Mingzhao Xing, Elizabeth Mambo, Xin Huang, Junwei Liu, Zhongmin Guo, Aditi Chatterjee, David Goldenberg, Susanne M Gollin, Saraswati Sukumar, Barry Trink, David Sidransky, Somatic mutation and gain of copy number of PIK3CA in human breast cancer. Breast Cancer Research. ,vol. 7, pp. 1- 8 ,(2005) , 10.1186/BCR1262
C.-H. Huang, D. Mandelker, O. Schmidt-Kittler, Y. Samuels, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, S. B. Gabelli, L. M. Amzel, The Structure of a Human p110α/p85α Complex Elucidates the Effects of Oncogenic PI3Kα Mutations Science. ,vol. 318, pp. 1744- 1748 ,(2007) , 10.1126/SCIENCE.1150799
B Karakas, K E Bachman, B H Park, Mutation of the PIK3CA oncogene in human cancers. British Journal of Cancer. ,vol. 94, pp. 455- 459 ,(2006) , 10.1038/SJ.BJC.6602970
R. Sanchez, A. Sali, Large-scale protein structure modeling of the Saccharomyces cerevisiae genome Proceedings of the National Academy of Sciences of the United States of America. ,vol. 95, pp. 13597- 13602 ,(1998) , 10.1073/PNAS.95.23.13597
Grazyna D. Szklarz, Mark D. Paulsen, Molecular modeling of cytochrome P450 1A1: enzyme-substrate interactions and substrate binding affinities. Journal of Biomolecular Structure & Dynamics. ,vol. 20, pp. 155- 162 ,(2002) , 10.1080/07391102.2002.10506831
Michael Feig, Kinetics from Implicit Solvent Simulations of Biomolecules as a Function of Viscosity. Journal of Chemical Theory and Computation. ,vol. 3, pp. 1734- 1748 ,(2007) , 10.1021/CT7000705