作者: Ata Kabán , Peter Tiňo , Mark Girolami
关键词: Data mining 、 Generalization 、 Probability distribution 、 Exponential family 、 Manifold 、 Data visualization 、 Multidimensional analysis 、 Visualization 、 Multivariate statistics 、 Knowledge representation and reasoning 、 Interactive visualization 、 Data point 、 Computer science
摘要: We present a general framework for interactive visualization and analysis of multi-dimensional data points. The proposed model is hierarchical extension the latent trait family models developed in [4] as generalization GTM to noise from exponential distributions. As some members distributions are suitable modeling discrete observations, we give brief example using our methodology semantic discovery corpus text-based documents. also derive formulas computing local magnification factors projection manifolds.