When Can History Be Our Guide? The Pitfalls of Counterfactual Inference

作者: GARY KING , LANGCHE ZENG

DOI: 10.1111/J.1468-2478.2007.00445.X

关键词: Data scienceSpeculationPeacebuildingCounterfactual thinkingInferenceEmpirical evidenceVariablesComputer scienceCounterfactual conditionalResearch questionsEconometrics

摘要: … In principle, the democracy variable can have a different causal effect for every dyad in the sample. We can then define the causal effect of democracy by averaging over all dyads, or for …

参考文章(44)
Andrew Gelman, Gary King, L. Sandy Maisel, Party Competition and Media Messages in U.S. Presidential Election Campaigns The Parties Respond: Changes in the American Party System. ,(1994)
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
Barbara Harff, Pamela T. Surko, Jack A. Goldstone, Ted Robert Gurr, Geoffrey D. Dabelko, Marc Levy, Alan N. Unger, Daniel C. Esty, State Failure Task Force Report: Phase II Findings State failure task force report: Phase III findings. ,(1999)
James M. Robins, Association, Causation, And Marginal Structural Models Synthese. ,vol. 121, pp. 151- 179 ,(1999) , 10.1023/A:1005285815569
James M. Robins, Marginal Structural Models versus Structural nested Models as Tools for Causal inference Statistical Models in Epidemiology, the Environment, and Clinical Trials. ,vol. 116, pp. 95- 133 ,(2000) , 10.1007/978-1-4612-1284-3_2
James D. Fearon, Counterfactuals and hypothesis testing in political science World Politics. ,vol. 43, pp. 169- 195 ,(1991) , 10.2307/2010470