Image quality for diffraction tomography, holographic backpropagation, and regularized sampling with noisy data

作者: Thomas J. Sorensen , Karl F. Warnick

DOI: 10.1080/17415977.2010.531899

关键词: Sampling (statistics)AlgorithmContrast ratioBackpropagationImage qualityArtificial intelligenceNoise (electronics)TomographyMathematicsComputer visionDiffraction tomographyHolography

摘要: We consider the behaviour of inverse image reconstruction quality as a function forward data SNR. A canonical scatterer geometry is used to obtain an analytical contrast ratio estimate for Colton–Kirsch regularized sampling. For holographic backpropagation tomography, developed SNR at which transitions from noise-dominated noise-free limit. Numerical results confirm theoretical analyses and extend more complex geometries. Holographic exhibits greatest noise immunity in sense that reconstructed reaches acceptable threshold lower than case standard diffraction tomography or sampling method.

参考文章(19)
A.A. Aydiner, Weng Cho Chew, On the nature of super-resolution in inverse scattering ieee antennas and propagation society international symposium. ,vol. 1, pp. 507- 510 ,(2003) , 10.1109/APS.2003.1217507
Connstantine A. Balanis, Advanced engineering electromagnetics ,(1989)
Fioralba Cakoni, David Colton, On the Mathematical Basis of the Linear Sampling Method Georgian Mathematical Journal. ,vol. 10, pp. 411- 425 ,(2003) , 10.1515/GMJ.2003.411
Andrea Tacchino, Joe Coyle, Michele Piana, Numerical validation of the linear sampling method Inverse Problems. ,vol. 18, pp. 511- 527 ,(2002) , 10.1088/0266-5611/18/3/301
Roland Potthast, On a Concept of Uniqueness in Inverse Scattering for a Finite Number of Incident Waves SIAM Journal on Applied Mathematics. ,vol. 58, pp. 666- 682 ,(1998) , 10.1137/S0036139996304573
David Colton, Andreas Kirsch, A simple method for solving inverse scattering problems in the resonance region Inverse Problems. ,vol. 12, pp. 383- 393 ,(1996) , 10.1088/0266-5611/12/4/003
N. Shelton, K. F. Warnick, Behavior of the Regularized Sampling Inverse Scattering Method at Internal Resonance Frequencies Progress in Electromagnetics Research-pier. ,vol. 38, pp. 29- 45 ,(2002) , 10.2528/PIER02092502
David Colton, Michele Piana, Roland Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems Inverse Problems. ,vol. 13, pp. 1477- 1493 ,(1997) , 10.1088/0266-5611/13/6/005
Dilip N. Ghosh Roy, John Roberts, Matthias Schabel, Stephen J. Norton, Noise propagation in linear and nonlinear inverse scattering Journal of the Acoustical Society of America. ,vol. 121, pp. 2743- 2749 ,(2007) , 10.1121/1.2713671
M. Slaney, A.C. Kak, L.E. Larsen, Limitations of Imaging with First-Order Diffraction Tomography IEEE Transactions on Microwave Theory and Techniques. ,vol. 32, pp. 860- 874 ,(1984) , 10.1109/TMTT.1984.1132783