From Continuous to First-Order Transition in a Simple XY Model

作者: J. E. Van Himbergen

DOI: 10.1103/PHYSREVLETT.53.5

关键词: Classical XY modelMonte Carlo methodSpinsTransition pointStatistical mechanicsCondensed matter physicsVortexPhysicsPhase transitionSquare lattice

摘要: An $\mathrm{XY}$ model of classical spins, on a two-dimensional square lattice, with nearest-neighbor interaction $V(\ensuremath{\theta})=2J[1\ensuremath{-}{(\frac{{cos}^{2}\ensuremath{\theta}}{2})}^{{p}^{2}}]$ is studied by Monte Carlo simulation that also monitors the vortex excitations. Both continuous and first-order transitions are found. In latter density vortices sharply increases at transition point. The turns first order, because shape $V$ such vortex-antivortex pair formation suppressed low temperatures for $p\ensuremath{\gtrsim}3$.

参考文章(7)
Eytan Domany, Michael Schick, Robert H. Swendsen, First-order transition in an xy model with nearest-neighbor interactions Physical Review Letters. ,vol. 52, pp. 1535- 1538 ,(1984) , 10.1103/PHYSREVLETT.52.1535
J M Kosterlitz, D J Thouless, Ordering, metastability and phase transitions in two-dimensional systems Journal of Physics C: Solid State Physics. ,vol. 6, pp. 1181- 1203 ,(1973) , 10.1088/0022-3719/6/7/010
J M Kosterlitz, The critical properties of the two-dimensional xy model Journal of Physics C: Solid State Physics. ,vol. 7, pp. 1046- 1060 ,(1974) , 10.1088/0022-3719/7/6/005
Jan Tobochnik, G. V. Chester, Monte Carlo study of the planar spin model Physical Review B. ,vol. 20, pp. 3761- 3769 ,(1979) , 10.1103/PHYSREVB.20.3761
Johannes E. Van Himbergen, Sudip Chakravarty, Helicity modulus and specific heat of classical XY model in two dimensions Physical Review B. ,vol. 23, pp. 359- 361 ,(1981) , 10.1103/PHYSREVB.23.359
Johannes E. Van Himbergen, Helicity modulus and specific heat of the periodic Gaussian model in two dimensions Physical Review B. ,vol. 25, pp. 5977- 5986 ,(1982) , 10.1103/PHYSREVB.25.5977
Michael E. Fisher, Michael N. Barber, David Jasnow, Helicity Modulus, Superfluidity, and Scaling in Isotropic Systems Physical Review A. ,vol. 8, pp. 1111- 1124 ,(1973) , 10.1103/PHYSREVA.8.1111