作者: Rushikesh Kamalapurkar
DOI: 10.23919/ACC.2018.8431430
关键词: State (functional analysis) 、 Mathematical optimization 、 Autonomous agent 、 Constant (mathematics) 、 Computer science 、 Trajectory 、 Linear system 、 Estimator 、 Function (mathematics)
摘要: This paper develops a data-driven inverse reinforcement learning technique for class of linear systems to estimate the cost function an agent online, using input-output measurements. A simultaneous state and parameter estimator is utilized facilitate output-feedback learning, estimation achieved up multiplication by constant.