Identifying Suspicious Activities in Company Networks Through Data Mining and Visualization

作者: Dieter Landes , Florian Otto , Sven Schumann , Frank Schlottke

DOI: 10.1007/978-1-4471-4866-1_6

关键词: Cluster analysisParallel coordinatesAsset (computer security)Data miningVisualizationEngineeringCategorical variableData scienceVisual inspectionInformation technology managementSemantics

摘要: Company data are a precious asset which need to be truly authentic and must not disclosed unauthorized parties. In this contribution, we report on ongoing work that aims at supporting human IT security experts by pinpointing significant alerts really closer inspection. We developed an experimental tool environment support the analysis of infrastructure with mining methods. particular, various clustering algorithms used differentiate normal behavior from activities call for intervention through experts. Before being subjected clustering, can pre-processed in ways. categorical values cleverly mapped numerical while preserving semantics as far possible. Resulting clusters visual inspection using techniques such parallel coordinates or pixel-based techniques, e.g. circle segments recursive patterns.

参考文章(25)
H. L. Le Roy, L. Lecam, J. Neyman, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV Revue de l'Institut International de Statistique / Review of the International Statistical Institute. ,vol. 37, pp. 230- ,(1969) , 10.2307/1402306
Shyam Boriah, Varun Chandola, Vipin Kumar, Similarity measures for categorical data: A comparative evaluation siam international conference on data mining. pp. 243- 254 ,(2008) , 10.1137/1.9781611972788.22
Hans-Peter Kriegel, Martin Ester, Jörg Sander, Xiaowei Xu, A density-based algorithm for discovering clusters in large spatial Databases with Noise knowledge discovery and data mining. pp. 226- 231 ,(1996)
Richard C. Dubes, Anil K. Jain, Algorithms for clustering data ,(1988)
Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan, Automatic subspace clustering of high dimensional data for data mining applications Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 94- 105 ,(1998) , 10.1145/276304.276314
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
J. C. Dunn†, Well-Separated Clusters and Optimal Fuzzy Partitions Journal of Cybernetics. ,vol. 4, pp. 95- 104 ,(1974) , 10.1080/01969727408546059
Alfred Inselberg, Bernard Dimsdale, Parallel coordinates: a tool for visualizing multi-dimensional geometry ieee visualization. pp. 361- 378 ,(1990) , 10.5555/949531.949588
Qingbao Liu, Guozhu Dong, CPCQ: Contrast pattern based clustering quality index for categorical data Pattern Recognition. ,vol. 45, pp. 1739- 1748 ,(2012) , 10.1016/J.PATCOG.2011.10.007